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FUNDAMENTALS

Introduction

raulic com ponents are used prim arily as actuation elem ents of pow er{control systen s.
e of the advantages ofhydraulic system s are:

. High{pressure hydraulic power can be generated et ciently, w ith pum p ezt ciencies of

92 percent com m on.

. Hydraulic com ponents are com paratively light in weight com pared with equivalent

m echanical and electrical com ponents because the highly stressed structures of the
hydraulic system m ake very et cient use of structuralm aterial. H ydraulic pum ps and
motors w ith power density less than 1 lo/hp are common. This light weight ism ade
possible by the high pressures available from com m ercial pum ps. Hydraulic system s
operating at 3000 psiand higher are quite com m on.

. Thehydraulic “uid acts as a heat exchanger, this results in sm aller and lighter com -
ponents.

. Thehydraulic “uid acts as a lubricant, this results in longer com ponent life.

. The hydraulic actuator is extrem ely sti® com pared w ith an equivalent pneum atic or
electrical system . Thism eans that the operating cond ition ism aintained against load
disturbances.

. System response isvery linear. Hydraulic actuators develop relatively large torques for
sn all devices.

. Hydraulic actuation o@ers the highest torque to inertia ratio in com parison w ith m ost
m echanical, pneum atic,and electrical system s. Thisproperty, coupled w ith the incom -
pressible nature of the m edium , results in exceptionally fast response and high power
output.

e of the disadvantages of hydraulic system s are:

. M osthydraulic system suse organic-based °uidsw hich present serious reand explosion
hazards, particularly at high tem peratures.

.Dit culty ofpreventing leaks in norm alusage.

. Inevitable °uid contam ination,w hich results in bad reliability and the need for constant
m aintenance.

. They are dit cult to design, °uid °ow isnotalvayseasy to predict or analyze.

. Hydraulic com ponents are not desirable in low power control system s.



1.2 Hydraulic Fluids

1. Basic Properties:

By de nition,a °uid isamedium thatcannotw ithstand shear force. T he density of the
°uid isde ned asthemassperunitvolume. The speci c gravity isweightperunitvolum e
and the speci ¢ gravity % is the ratio of the density of the substance in question to that
of water at 60° F. The petroleum industry uses a m easure of relative density called \AP I
gravity." APl gravity in term sofspeci ¢ gravity is,

14135

DegreesAPI= T60°F <60°F

i 1315 ;

where %60°F =60°F represents the speci c gravity of the substance at 60°F relative to water
at 60°F . The mass density ofa °uid is a function of both pressure and tem perature. It
increases w ith increasing pressure and decreases w ith increasing tem perature. At a given
tem perature,a good approxim ation is

b= %o(L+ aP j bP?);

w ith typical values for hydraulic oil

4:38£ 10i% in%=h
5:65£ 101 in‘=h? :

a

Ata constant pressure:
b= olli (T i To)l;

where
® = cubicalexpansion coet cient :

This linear approxim ation is accurate w ithin 0.5 percent for m ost hydraulic “uids over tem -
perature ranges 0f500° F.For smallchanges in both P and T :
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0 ccasionally, ® and ~ are de ned w ith respect to the instantaneous values of volum e and
density,

! | ! |
®__1 0% 1 ov
= - — -
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=gV @_ = @_

v, B

~iscalled the bulk modulus (the reciprocalof  is the com pressibility) and isalways positive.
In hydraulic system sthe bulk m odulusofthe pure °uid can be drastically reduced;e.g., from
entrained air. In term sofa and b, the uid’sbulk modulus is given by

- l+apjhbp?
aj 2bpP ]

2.V iscosity:

Fluids cannot w ithstand shear: any shear force will result in a nite shear rate. A
Newtonian °uid is one for which the shear rate is proportional to the shear stress. The
constant of proportionality is called the absolute viscosity, 1,

1 = 6 ;
(du=dx)
where
¢ = shear stress
du = change in velocity resulting from shear stress
x = direction ofshear stress

The kinem atic viscosity is de ned by

The viscosity of “uids increases w ith pressure
log, — = cP;
and decreases m arkedly w ith tem perature
1 = loei,(T iTo) :
Form ost petroleum products at room tem perature,
c=7£ 107 in’=1b:

Typical viscosity/bulk m odulus{tem perature curves are shown in Figure 1.

Since several units of viscosity are in use, they should be carefully de ned:
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2 Reyn. A very large inconvenient unit in the English system ,1 Reyn= 1lhs=inZ.

2 Centipoise (cP) (metric system ). 0 ne centipoise is the viscosity ofa °uid such that
a force of 1 dyne will give two parallel surfaces 1 cn 2 area, 1 cm apart, a velocity of
0:01 cm =s. The centipoise is thus 0:01 dyne ¢s=cm 2.

2 Centistoke (cSt). Thisisa unit for kinem atic viscosity and it corresponds to the
centipoise divided by the density in consistentunits. T he centistoke is thus 0:01 cm 2=s.

2 Saybolt Universal Seconds. The Saybolt viscosim eter is com m only used to deter-
m ine the viscosity ofpetroleum products. The tim e required for60m L ofthe sam ple to
°ow through a 0:176 cm diam eter and 1:225 cm long tube ism easured and designated
SSU .

3. ThermalP roperties:

Speci ¢ heat,Cp , is the am ount ofheat required to raise the tem perature ofa unitm ass
by 1 degree. For °uid at moderate tem peratures Cp % Cy. Thermal conductivity is a
measure of the rate ofheat °ow through an area for a tem perature gradient in the direction
ofheat °ow . For petroleum -base oils:

2 gpeci ¢ heat
¢, - plT/_(O:388+ 0:00045T) ;
4

where
Cp = specicheat,BTU=Ib¢°F
% = speci cgravity at 60°F
T = temperature,°F

2 therm al conductiv ity

81
k = 038/_3[“ 0:0003(T j 32)]
4

in B tu=zh ¢Ft2 ¢°F ¢in.

4. EQ@ective Bulk M odulus:

The bulk modulus ofa liquid can be substantially lowered by entrained air and/or m e-
chanical com pliance. C onsider the °uid shown schem atically in Figure 2, where the initial
total volum e of the container is the sum of the pure °uid and entrained gas volum es,

V= Vot Vg
A fter the piston m oves to the left there is a decrease in the initial volum e of
i CVe= jCVgj CVt+ €V
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where

i ¢V, = decrease in gasvolume
i ¢ V- = decrease in liquid volum e
¢ Ve = iIncrease in container volum e

The e@ective bulk m odulusw illbe de ned as

A
. lver
or A |
1_ovg vy v Moey TRy T
o Ve 'gep Ve "veer Ve P
Since
_— V-¢ P
BN
- Vgep
AT
we have i 1 i 1
1 Ve 1 Ve o1 1
— = — t — — t —;
e Vt g Vt c
where
- VP
Ty,
issom e kind ofbulk m odulus of the container w ith respect to the totalvolum e. . can also
be w ritten as i 1
1 1 1 vy 1 1
— = —+ —+ — — | =
e c t g )
and since
T
we get
LR R P RN
e c ° t g
or
- -

The most dit cult task in applying this formula is in determ ining the bulk m odulus of
containers due to m echanicalcom pliance. Them ajor source ofm echanical com pliance is the
hydraulic lines connecting valves and pum ps to actuators. For a thin{walled steel cylinder

- TE

C'D_



where

T = wallthickness
E = modulusofelasticity
D = diam eter
Fora thick cylinder
_ E
[ ﬁ .
Bulk modulus fora gas is
g = 14P
where P is the pressure.
Exam ple: Fora petroleum base °uid ~~ = 2:2 £ 10° psi. Suppose that the °uid is inside a

steel pipe at pressure 500 psiand contains 1% (by volume) ofentrapped air. LetD = 6T ;
whatis its ;?

_ E 1 6 o
= — = — = £ 1
7 BT 6£30£10 5 0° psi
g = 14 £ 500= 700 psi
1 1 1 01 i - i
— =z 4 ML = 1:904£ 107°) .= 52600 psi

e H5E£ 108 2:2£ 10° 700

In the absence ofentrapped airwe would get .= 210000 psi;in otherwords 1% air causes
. to decrease by a factor of 4. If the pressure P were 1000 psi, then . = 84100 psi. This
Isan advantage that high pressure system s o@er.

B ecause entrained air reduces the bulk m odulus, the natural frequency of hy-
draulic actuators in servo system sm ay be lowered to such an extent that system
instability occurs.

5. Chem ical P roperties:

Themostimportant chem ical properties are:

2 Thermal: Som e hydraulic “uids when heated to high tem perature decom pose to form
gaseous, liquid, or solid products.

N

0 xidative: R eaction of hydraulic “uids w ith oxygen.

N

Hydrolytic: R eaction ofhydraulic uids w ith w ater.

=

ith regards to re safety:

N

Flash point: Tem perature at which vapors are form ed and cause a transient °am e
under the application ofa test °am e.



2 Fire point: Tem perature at which transient °am e is self sustaining for 5 seconds,
usually about 50 degrees F higher than °ash point.

2 Autogenous ignition: Considerably higher than re point; tem perature at which a
liquid droplet ignites upon contact w ith heated air.

6. Surface P roperties:

Twomain types:

2 Foam ing: Emulsion of gas bubbles in a liquid. A ntifoan ing additives are frequently
added in the hydraulic °uid.

2 Boundary lubrication: It relates to physicochen ical relations occurring in thin In s at
the cuid{m etal interface.

7.Choice ofHydraulic Fluid:

System perform ance, both steady state and transient, is a®ected by °uid properties as
follow s:

2 Viscosity: Pipe °ow, lubrication, leakage, system et ciency.
2 Density: 0 ri ce °ow,acoustic e®ects, system et ciency.

2 Compressibility: Transm ission characteristics, stability and response of closed{loop
control system s.

N

Speci ¢ heat and therm al conductivity: Com bined with viscosity and density a@ect
tem perature rise and heat dissipation.

2 Vaporpressure: A ®ects cavitation e@ects.
Hydraulic system life and reliability are closely associated w ith such °uid properties as:

2 Boundary lubrication a®ects wear in pum psand m otors.
2 Therm al stability: Poor perform ance results in high gas em ission.

2 Compatibility; ie., the property of the °uid to be a®ected or to aect surrounding
m etallic and nonm etallic m aterials: Poor perform ance m ay result in side e®ects such
as seal deterioration.
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1.3

Fundam entals of H ydraulic F low

1. Introduction:

°uid °ow s there are four types ofequations that need to be w ritten:

1. Conservation ofm omentum or Newton"s law requires that the net rate of out®ow of

momentum in a speci ¢ direction x plus the rate at which m om entum accum ulates
W ithin the controlvolum e be equal to the force app lied to the controlvolum e in the x

direction, >

X d 4
Fy = T Vl/zU dav + Al/zuUndA :
In di@erential form the sam e principle is expressed by the N avier{Stokes equations as,

' i '
02u , 02u , 02u
@x2 @y 0z°

u
X

u
y

U 0P
+oW = BX j —+ 1
z : I@x

[<=>)
[<=>)
[<=>)

t v

i
fu
bo—+ U
0 @t

(=)
(=)
[<=>)

and sim ilarly fory, z directions.

. Conservation ofm ass or continuity requires that the rate of m ass °ow into a control

volum e equalthe rate ofm ass “ow outplus the rate atwhich m assaccum ulates w ithin

the controlvolum e, - z

l/zUndA+d— bdv = 0 ;
A dt v

or
X X d (kv
W in i W out = g (dtO)

. Conservation of energy requires that the increase in internal energy of a system be

equal to the work done on the system plus the heat added to the system ,
i ]

A 1
o, di, % p

dE
= = + + —+ e WU,dA ;
it dt dt o« % o
where

0, = heat®°ow to the controlvolume

W, = shaftand shearwork done on the system

E = totalinternalenergy of °uid inside the controlvolum e

e = totalinternalenergy perunitofm ass;

U2
e= U+ gl + Twhere
U= intrinsic internal energy perunitm ass
Z = height above a reference point
P = pressure on an elem ent ofarea at the surface of the
controlvolum e
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4. Constitutive relationsorequationsofstate expressthe density and viscosity asfunctions
of tem perature and pressure:

h

WP ;T)
L(P;T):

[
1

A very important quantity ofa °ow is the Reynolds num ber,which represents the ratio
of inertia to viscous forces and is de ned by

hla Ua
Re= == <5
where
U = average or reference velocity of °ow
a = acharacteristic length (e.g.,a diam eter or length)

For low Re,the °ow isdom inated by viscosity, we refer to this as lam inar °ow . Forhigh R e,
the °ow isdom inated by inertia and is referred to as turbulent °ow .

For one{dim ensional, steady, incom pressible, frictionless °ow with no body forces, the
N avier{Stokes equations sim p lify to

u2

—+ —+ [ = const

20 g
ThisisBernoulli's equation and is applicable along a stream line of potential °ow .
2. Flow in Pipes:

It can be either lam inar or turbulent. Reynolds num ber is based on pipe diam eter D ,

In general,

Re< 2000 ) lam inar °ow
Re> 4000 ) turbulent®ow :

Thepressure drop for lam inar °ow in circular cross sections is given by,

Piij Py _ 1281Q .
L D4~
For turbulent °ow ,
P1 I P2 ) - 10:251/20:75 L5
] = 0.242WQ :

12



where

Pii P, = pressure drop, psi
0 = volume °ow rate, in3=sec
= pipe length, in
D = pipeinside diam eter, in
b = °uid mass density, Ib ¢sec’zin*
1 = °yid viscosity, Ib ¢sec=in?

For lam inar °ow in noncircular cross sections see Fig. 3.

For turbulent °ow s in noncircular cross sectionswe can use the above equation, butw ith
the hydraulic diam eter D , instead of D :

4
D h = S_
where
A = °ow section area
S = °ow section perim eter

For cicrular sections, the above formula producesD , = D as it should.

3. Flow through O ri ces:

The design of valves for control and regulation purposes and the design of pum ps and
motors require the analysis of ow through rounded and sarp{edged ori ces. Consider the
°ow through the ori ce, schem atically depicted in Figure 4. W e denote

Ao : oricearea
A, : stream area at the pointwhere the jetarea ism inim um

W ede ne the contraction coet cient of the ori ce,

Using Bernoulli's equation between points 1 and 2,
1 1
P+ E%Uf: P,+ El/zuf;

and the continuity equation,
Q = AUy = AUy,

we get the expression for the °ow rate
S

2
Q = C4hAy %(Pli P2);

13



where the discharge coet cient C 4 isde ned by

C.C¢

Cd: g Z
1j C2(Ao=A1)?

The coet cient C, is called the velocity coet cient, and is an em pirical factor introduced to
account for the fact that, because ofviscous friction, the jet velocity is always less that the
theoretical value. C, isnorm ally around 0:98 and can be setequal to one in m ost practical
app lications. Since Ay ¢ Ay it follows then that C4 % C.. The discharge coet cient is
dit cult to com pute,buta good approxim ation for m ost ori ces is

Cd1/4 06 :

i qa— R U — i i
Since C4 2=% Y% 100in? Ib{sec, the ori ce equation can he written as

q____
Q = 100Ag Pyj Py

where pressures are in psi, ori ce area is in in?,and volum etric °ow rate is in in®=sec. T he
above approxim ation is good for ori ces of zero length; for an ori ce with non{zero length
the discharge coet cient is usually less, see Figure 5.

The above expressions are valid for turbulent ®ow ,which isnorm ally the case for ori ce
°ow . For lam inar °ow ; i.e., very low Reynolds num ber, the discharge coet cient is sm aller
and the °ow rate is proportional to the pressure di@erence instead of the square root of
the pressure di®erence as in the case of turbulent °ow . T his is, for our purposes, the m ost
important di®erence between lam inar and turbulent °ows.

2 HYDRAULIC ACTUATORS

2.1 Introduction

Hydraulic actuators are used to convert uid to m echanical energy and vice versa,

m.ofor
pun p

Fluid
Energy

M echanical
Energy

Thereare two m ain types ofhydraulic actuators:

2 Hydrodynam ic (turbine): Continuous °ow from inlet to outlet. Low pressure m achines
with high volume output. They are used prim arily for auxiliary functions and not
control purposes.

2 Positive displacem ent: F luid passes through the inlet into a cham berw hich expands in
volum e and llswith °uid. The volum e expansion causes shaft rotation in the case ofa

14



motororviceversa forapump.Thevolum eoftrapped °uid istransported to the outlet
side where it isdischarged. T hey are extensively used in control system s and they can
generate relatively high pressures at relatively low °ows. Unlike hydrodynam ic pum ps,
which can tolerate “uids w ith considerable contam inant content, positive displacem ent
pum psrequire clean °uids ofgood lubricity and adequate viscosity.

There are three m ain types of positive displacem ent actuators:

2 Gear devices are used extensively for jet fuels, lubricating oils, and other app lications
where pressures up to 1500 Ib=in? su+ ce. G ear pum ps are xed displacem ent pum ps;
ie., delivery per revolution cannot be changed over large ranges w ith good retention
of et ciency.

2 Vaneactuators nd broad use in such applications as roadworking m achinery, m achine
tool application, and m any other uses where pressures do not exceed 2000 Ib=in2.
Variable disp lacem entvane pum psare available butpressuresrarely exceed 1500 Ib=in?.

2 High pressure generation of °uid power in the 3000 to 5000 Ib=in? range can be ac-
com plished by the piston actuator. E ither axial piston or radial piston actuators, xed
and variable displacem ent, are availab le.

Figures 6 and 7 show schem atically typical axial piston actuators. T hese units are qu ite
com pact and provide a high power volum e ratio. They are capable of operating in con g-
urations such that the angle between the drive shaft and the cylinder block is ad justable,
see Fig. 7. Adjustm entof this angle can cause the pum p displacem ent to vary continuously
from zero to m aximum .

2.2 Energy Considerations | Ideal A nalysis

Consider a piston ofcross section area A . Ifthe °uid pressure on either side of the piston is
P,and P,, the total force on the piston Is,

F=APLi Po):
Ifwe denote the load pressure drop by
PL="Pyi Poy
the work done by the piston during a translationalm otion ¢ S is
¢W = AP ¢S =PLCV ;
where ¢ V isthe volum e sweptby the piston during the m otion. T he °uid power is

¢cw ¢V
Pip= —— =P —=P ;
in ¢t L¢t LQL

15



where we have denoted

¢V
QL - ﬂ
as the load °ow rate.
Theoutputm echanical power is
e TeCp ]
Pout = Tt g¢t = Tyl 5
where
Ty = generated torque
by = shaft speed ofm otor :

Assum ing no losses; ie., ideal analysis,

Pin = Pout
or
PLQuL = Ty
Ifwe de ne
S
Hn

as the displcem entof the actuator, we get
Tg = D m P|_ :

W e can see that the displacem ent is by de nition the °ow rate per unit m otion.

Remark: This is true for a rotating device. For a piston type actuating device the piston
area is the param eter analogous to the disp lacem ent ofa rotary device. Since,

FoXp = PLQy
QL
oz A,
Xp

we get

2.3 ReallM otor Analysis

There are two prim ary sources of losses in hydraulic devices: leakage °ows and friction.
T herefore,we can identify two typesofet ciency: volum etric ex ciency and torque et ciency.
W e study each one separately.

16



1. Volum etric et ciency: Consider steady state; i.e., com pressibility isnotan issue. Figures
8 and 9 show schem atically the °ows in an axialm otor. If the displacem ent of the m otor is
D, and the shaft speed p, , the ideal °ow through the m otorwould be

QLO: Dy by -
Continuity gives
le Qim+Qem1+Q|_o
Q. = QLOiQem2+Qim;
where Qi 1s an internal leakage °ow and Q ¢ 1 (Q en2) is an external leakage °ow at the
supply (return) line. Leakage “owsoccur at suz ciently low Reynolds num bers so that they

are m odeled as lam inar °ows. Therefore, the ow rate will be proportional to pressure
di®erence:

Qi Cin(P1i Po)
Qen1 = Ceml(Pli PO)
Qenz = Cena2i Po);

where

Cin internal leakage coez cient
Cen = external leakage coet cient:

W ithout loss of generality we can assum e that all pressures are gage pressures,

and
Cen1= Cenz:

T herefore,we get
Q1+ Q2= ZQLO+ Qen1i Qen2t 2Qin

or M ¢ |

Qu=Dnpa t Ci + ;m PL;

where we have denoted
Q1+ Qo
QL = —
the load °ow,which isan average of the “ows in the two m otor lines.
The volum etric et ciency isde ned as the ratio of °ow which results in m otor speed (the
ideal °ow ) to the °ow supplied to the m otor




Since
Q1= Dyphn t (Cem + Ci)Pl;
w ith

we get
, 1

v Cin +C :
+ Lintlen
1 b Py

W ecan de ne the slip ow by
Qs= Cin * Cen )P1:
Since the slip °ow is lam inar, it is inversely proportional to viscosity

D
Q s = Csl—mpl
where 1
Cs-= D_(Cem t Cin)s
m
Is the coet cient of slip. T herefore, the volum etric ex ciency can also be w ritten as
i L
1
,V - 1+ CSP1
1
W

2. Torque et ciency:The ideally generated torque is

Ty = Dw(Pri P2):

In reality, however,
Tg: Td+ Tf+ Tc'*' TL ;

where
Tg = lossdue to °uid friction (dam ping)
T¢ = lossdue to internal (n echanical) friction
Te = lossdue to seal friction
T, = what's left over { load torque :

W e study each one separately.

Tq is the torque required to shear the °uid in the sm all tolerances between m e-
chanical elem ents in relative m otion; it is proportional to m otor speed,

Ta=Bapn = CaDp iy ;
where
Bn = Cy4Dyt = viscousdam ping coez cient

Cg= dimensionlessdam ping coet cient

18



Toseewhy Ty iIsproportional to p, , consider:
U
Ty» ¢L2¢CL; ¢ = 1L—;U » L) Tg» 2 L3 L3» D,
Since Ty isproportional to y, it representsa kind ofdam ping torque.

T¢ is the torque lost during transform ation of piston m otion into rotary shaft
motion, it is due to m echanical friction.
To establish a relationship for T¢, consider
Feo LFF » (Pot POL2;Te» LEg» L(Pyt Po)L3» 1D, (Pt Py):

T herefore, T¢ is proportionalto D, (P, + P,), and since it m ust reverse its direction w ith
motor speed, we can w rite

T¢ = LCfDm(PH Pa);

)
where
C¢ = friction coet cient
Css = static friction coet cient

and steady{state perform ance is assum ed. Typical curves illustrating the transition from
starting to running friction are shown in Figure 10.

T. IS a constant torque loss, it reverses direction w ith speed [(is =Jus J)T ] Just
like T¢,and isusually neglected.
A ssum ing positive m otor speed |, and substituting, we get
PiDn = CaDnlpg + CeD g Pt Po)+ Tet Ty
The torque or m echanical et ciency is de ned by

. _ (available torque) T,
" (generated torque) P .D,

Ifwe assume P, = 0 and neglectT.,we get

,:PleiCdDmlFLminDmpl_ .Cdlpﬂ

The over{all et ciency is

- :Pout:TLU-m: TL ¢Dm|-'l-m:,,
Py QP1 DyPy  Q by

19



or
oo Li Catpn=Py)i Cf
oa 1+ (Csplzluﬂ) -
T herefore, static perform ance ofa m otor with zero return pressure can he de ned by the
param etersCs,C4,C¢,and the dim ensionless quantity 1y, =P ;. W e can see that,as Figure
11 dem onstrates, as the nondim ensional m otor speed 2, =P; is increased, the volum etric
et ciency ", also increases, while the torque et ciency "¢ is decreased. T he overall et ciency
reaches an optimum value for a certain m otor speed.

Remark: The above expressions are true for m otor. For a pum p, an analogous procedure

show s that
, _ 1i (Cspllep)

L CotN Py O
Where the pum p speed is denoted by N ,.

2.4 Experin ental R ealizations

W ewant to determ ine the basic m otor perform ance param eters from a series of tests. T he
load torque is
TL=PDy i (Tat Tet To)

or h i
TL=PDyi Cy®Dppn + CeDy(Prt Pp)+ T

\Controllable" param etersare Py,P,,P. = Py j Po, by, T ,and Py + Po= P+ 2P,. Ifwe
keep P, and |, constant,we get

[s=>)

T,
PL

= Dm(li Cf):

[<=>)

As gurel12shows, (T, ;P.) isthegraph ofa straight line and from the slope of this straight
line we can get the quantity D , (1 j C¢).

In order to determ ine friction characteristicswe unload them otor (T, = 0) and m easure
pressure di®erence at various return pressure levels,

DmPL: Cdle“m+PLCfDm+2P2CfDm+Tc;

or 1 = -
PL= ———— (41D + 2P,C¢Dp + T
L Dm(li Cf) d n b 2V fU c
T herefore, w ith p, constant,
P, _  20¢
P, 1j Cy
and the starting value is at
Te ]
Dm(li Cf) -
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W e can get then C¢ from this graph, Figure 13, and then obtain D, from the previous
experim ent, Figure 12.

To measure torque losses that depend on speed, we set again T, = 0 and P, = 0 (or
constant), and m easure P versus [ ,see Figure 14,

@P. _ 0Py Cgq?

L 6m  LiCr

The starting value is at
Te

D m (1 i Cf)
and from the slope of the curve and the previous results we can get C 4.
M otor leakage characteristics can be determ ined by locking the m otor shaft and setting
P, = 0. Then apply pressure P, and m easure the ows in the return and drain lines. T he
return line °ow is the internal leakage and the drain line °ow 1is the external leakage, see

Figure 15. The slopes of these two curves versus P, give the desired coet cients C i, and
Coep -

2.5 TypicalH ydraulic Pump Constants

Typicalvalues for usualpum ps are:

[Unit [ Do (ind=rev) | Cyq | Co| C¢|T¢|
P iston pum p 3:6 | 168 £ 10* [0:15£ 1077 | 0:045 | 0
Vane pump 2:8 | 7T3E£ 104 |047E£ 1087 {0212 ] 0
G ear pum p 2:9 | 1022 £ 10 | 0:48£ 1077 [ 0:179 | 0

3 HYDRAULIC CONTROL VALVES

3.1 Introduction

Hydraulic control valves use m echanical m otion to control °uid power. By throttling the
°uid power in a single or multiple{ori ce valve, they provide control by predictable °ow
restrictions. T here are three m ain types ofhydraulic valves:

2 spoolvalves
2 °apper valves

2 jetpipe valves

as is schem atically shown in Figure 16.
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Spool valves are classi ed according to the num ber of lands and the num ber of ways
the °ow can enter and leave the valve, see Fig. 16. A three{way valve is the sim p lest
con guration which pern its load reversal,a four{way valve is the m ost com m on in practice.
If the land width is less than the port in valve sleeve, it is called an open center valve or
underlapped. O therw ise it is called critical center or zero lapped valve, and closed center or
overlapped valve.

Thesinglemostimportant characteristic ofa valve is the ow gain, which is the slope of
the load °ow Q  vs. spoolstroke x, curve. Typical ®ow gain curves are shown in Figure 17.
M ost four{way valvesarem anufactured w ith a critical center because of the desirab le feature
of the linear °ow gain. C losed center valves are not desirable because of the \dead{band"
nonlinearity which can cause stability problem s. 0 pen center valvesexhibit \blinear" gain
characteristics: the gain at nonzero set points is lower which results in larger steady state
errors and decreased bandw idth or control system responsiveness. This is an undesirable
feature.

Spool valves require close and m atching tolerances, therefore such valves are relatively
expensive and sensitive to °uid contam ination. T he required tolerances for apper valves
are not as strict, although the relatively large leakage °ow s of “appers lin it their app lication
to low power levels. Flapper valves are used aln ost exclusively as the rst stage valve in
two{stage servovalves. Jet pipe valves are not used as often because of their larger leakage
°ows and slower response tim es.

3.2 Flow Analysis

Consider the typical four{way spool valve shown in Figure 18. Suppose that the spoolis
given a positive displacem ent from the nullor neutral position, that is, the position x, = 0,
which is chosen to be the sym m etrical position of the spool in its sleeve.

A ssum ing steady state,we can neglect com pressibility,and we denote

Ps = supply pressure
Po = return pressure
P, = P1| P,:

All°ows,including leakage bypass ®ows, can be assum ed to be ori ce °ows:

q____
Q1 = K1 Psi Py
q___ ~
Q2 = K2 Psi Py
q____
Qs = K1 Poi Py
q____
Qs = Ko P1i Py
where sS_
K.:CdAiE 1= 1;:::4
)



Assum ing m atched ori ceswe have

b=
N
1
b=
~

If the ori ces are also sym m etrical,
Al(xv) = AZ(i Xv)
A3(Xv) = A4(i Xv):

T herefore,
Ar(0)= A2(0)= A3(0)= A4(0)= Ay

Assum ing no external leakage at the load, continuity gives

Qv = Q1i Q43

Qu = Q3iQ2:
T herefore,

Q1iQ3=0Q4i Q2:

A lgebraic m anipulation produces,

0571 Q5= K{[Psi Pu)i (Poi Po)l=+Ki(Ps+PoiPriPy)
03i Q2=KAI[PP1i Po)i (PsiP)l=iKiPs+PoiPijP2)

) K7Q:i 03)Q:1+03)= iK{iQai 02)Q4at Q2)
) Qi Q)KZQi*+ Q)+ Ki@Qat Q2)]= 0
) 0:1iQ3=0Q4i0Q2=0
) Q0:1=20Q3
Q2= Q4
Ifwe assume Py= 0 asthe base pressure, equation Q ;= Q3 0rQ,= Q4 produces
Ps=Pit+t Py
and com bining w ith
PL="Pqsij Py
we can solve for
Pst Py
P, = :
Psj P
P2 = SI2 L:

Thesupply cow Qg is
0s=0Q:1+ Q2= Q3+ Qy:
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Tosummarize,we can get the two °owsQ , and Q¢ as:
s S

1 1
QL = C4Ay %(Psi PL)i CdhA, %(PS*’PL);
s s

1 1
CeAy —(Psi PL)+ CyAy —(Pst PL):
) )

Qs

Since theori ce areasA jare functionsofx,,we can getthesupply and load °ow sas functions
of load pressure and valve position,

Qs
0L

expressions that are quite nonlinear.

Qs(xv;PL);
QL(XV;PL);

3.3 Valve Coet cients

Wewish to linearize Q, = Q _(xy;P.) about a particular operating point 1. Using Taylor
series expansion we get:

i 1 i 1
00 80,
¢Qu = Cxy+t — C¢P:
QL @XV X Vv @PL 1 L
Wede ne:
- 00 .
°ow gain K =
! T obx,
° i _ 00,
ow {pressure coet cient K= j o
L
v @PL Kq
ressure sensitiv it K = = - Mg
p y 7, .

T herefore, the linearized equation of pressure{°ow curves becom es:
CQu=Kgbxyj KcCPy:

W ith regards to the above °ow coet cients:

2 K, aBectsopen{loop system gain and ism ax at the zero operating point,

2 K . aGects system dam ping ratio and ism in at the zero operating point.
W ith regards to the operating curvesQ = Q L (Xy;PL):

2 P issethy load dem and,

2 (), issetby valve stroke at that load.
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3.4 Critical C enter Valves

Ideally, leakage °ow s are zero for critical center valves,

0, ¢ Q4
Qs ¢ Q3
for x, > 0. Therefore, s
AP
- - C A £ S 1 L
QL =201 h1 ¢ —
For a valve stroke the other way, x, < 0,we have
01 ¢ Q2
03 ¢ Qy
and S
25Pg+ P
- - c.A, &0l L.
QL= i04= iC4A, i
T herefore, in general for sym m etrical ori ces,
\élé '
X X
= Cyjp1j—%= Pgj —=P
QL dJ 1JJXVJ m S i % L
The valve area, A (, is in general function ofx,,
A= Ai(xy);
or Ad |
Ay
dA | = dx, ;
1 dXV XV
where
dA .
W
dx,
and is called the valve area gradient. Integrating the last equation,
zZ

X

Ari Ai(0)= vadxv:

For a critical center valve,
A 1(0) =0

and the valve area gradientw is constant. T herefore,
Ay= wxy:
For exam ple, for a circular valve w ith diam eter d and full periphery ports,

Ay = %hdxy ) w = %d;
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and v
Xy
XuJ

X =
—'p,
xvl

This is the desired equation for the critical center valve operating curves, Figure 19.

— Ps i

QL:CdeXVj 1/
0

The °ow gain is the \slope" (spacing) of the curves w ith respect to x, for constant P,

80 °1
Kq= @x: = CqWw %(Pm PL)

and this is constant. T he °ow {pressure coet cient is the slope of the curves w ith respect to
P.ata xed xy,

q
(- 00, _ Cawxy (1=0)(Ps i PL)
: I@PL 2(Ps i PL)
and this dependson P . The pressure sensitivity coet cient is
Kq_ 2(Psi PL).

K,= —=
Pk Xy

Atthenullpoint,

and
SP_
qu = CdW _S
0
Keo = 0

Computations for °ow gain K , are very reliable, therefore stability characteristics of hy-
draulic system s are quite robust. T he com puted values for the °ow {pressure coet cientm ay
be far from reality; the m ain reason for thisnon{zero leakage °ow . Leakage ®ow ism axim um
at valve neutral (null point) and decreases rapidly with x, as the spool lands overlap the
valve ori ces.

3.5 O0pen Center Valves

Consider the open centervalve shown in Figure 20 and suppose thatvalve operation rem ains
in the underlap region. W e also assum e m atched,

and sym m etrical,
Ar(xy)= Aa(i xv) ;5
valves. T hen for underlap operation,
- U

26



wehave

A1: A3
A2: A4

WU+ xy)
WU i oxy)

where U s themax underlap am ount.

The °ow through the valve is given by
s S

1 1
QL= C4Aq %(Psi PL)i C4As %(Ps+ PL);

and norm alized,

H TS—F M =
0 A B T TR A R

CawlU Pg=h U Ps U Ps

which is the expression for the desired °ow {pressure curves. 0 utside the underlap region,
the open center valve behaves like a critical center. The m axim um °ow through the valve is

q
Q0= QL (Xy,0:0)= 2C4wU Pg=% at x,,, = U:

N ote that for a critical center valve at x,,, = U wewould have,

a
QLmax: CdWU Pszl/z;

halfasmuch for the open center.

The °ow gain is

0 Sert S S— !
q @xv d ) I Ps S
and at thenull point, s
Ps
Kg = 2Cqw —;
Jo d i

tw ice that of the corresponding critical center valve. Thism eans that the slope of the initial
segm entofthe (Q L ;xy)curve ofFigure 17 is tw ice asm uch as the subsequent segm ent. T he
°ow pressure coex cient is,

s (o) 1

oMU T 1 e 1y m
Kc:i@Q—L:CdW S @q L +q|U A -

P|_ % ZPS 1| P 1+ P

Pg Ps

Atthenullpoint,
SeoMy T
K¢ = CqW el 6 0 asin the critical center valve.
2 S
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The pressure sensitivity coet cient is

=~

q

KP:E

and at the nullpoint

2P . .
K oo = U—Sﬁ 0 asin the critical center valve.
N ote that by taking the lim y v o; i..,as the open center valve approaches critical center, we
get the right result for K o, and K ,, but not for K (.. For the latter case, U = 0 has to be

substituted before form ing the relation for Q | .

3.6 Flapper Valves

Aswehavealready m entioned, the prim ary advantage of®appervalvesistheir loose tolerance
requirem ents which lowers their cost. D ue to their increased leakage, however, their use is
restricted to low power applications.

Consider the single jet “apper shown in Figure 21. Continuity gives,

Q1= Q2% Q. :
Theori ce ®owsare s
Q1= Aol l%(PSiPc);
or s
leziDSCdo l3—2(PsiPc);
and s____ s
2 2

Q2= AsCy %Pc = %Dy (Xro i X¢)C g %Pc :

Ifthe load is blocked,

Q1= 0>
we get
g p ey TP
Pe o g, CoAs _
PS CdOAO

A design criterion is an equilibrium control pressure
P = 0:5P3 :
Therefore,at equilibrium ; ie., the nullpoint,

CarAs = Cgoho=) CqgoAo= Cue¥D y Xgo:
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Substituting the expressions for Q ; and Q , into

QL =017 Q:
we get s i Is_
Q1 _ 1iP_CiCdfl/4DNXf0 1iX_f Pe
Cooho (2=%)Ps Ps C goA o X fo s
and for the design criterion
P, = 0:5P3
we get s : i !Sp_
X
Caho (2=%)Ps Ps X0 s

The nullcoet cients, evaluated at

are

@ - S___
L —

K g = —@Xf—o-_cdf%DN —;
Koo= 0Q L= _ 2C4hD y xgg
co ~ | —_— - e

epP %P
K = @Pc:_ Ps
Po — T 5.
Oxs ,  2Xto

For the double jet °apper valve shown in Figure 22 we have,

Qv = Q1i Q23
Qv = Q4i Q3
and substituting in for the °ows,
s s____
2 2
QL = Cahy %(Psi P1)i CorfhD v (X0 i X¢) #1;
s____ s

2 2
QL Cor#D v (X0 + X5) gpzi Ca0ho %(Psi Po):

Atthenullpoint,
CgoAo= CuehD y Xgo

they becom e

S—r—— i 1Is____

CaoAo Ps=h _ Ps Xto s
A Is s -

0 R S LTI T
Cayoho Ps=h X fo ps ! ' hy



and com bined w ith
PL="P1ij P2

the de ne, im plicitly, the operating curves Q . (xf;P ).
In order to evaluate the valve coet cients at the nullpoint,
X¢g= Q=P =0; Py=Py;=05Pg;

we can linearize all three equations

sS___
P 2C %D y X
6QL = CorDy V—“txn—%#wl;
i 1P 5
sS___
P 2C %D y x
60, = ColhDy V—“txw—%#m;
i 1P 5
¢P. = ¢P1| ¢P,:
T herefore, s
P CehhD y X
¢Q|_:Cdfl/4DN _S¢Xfi JPA_N—H)G;PL;
) %P g
or
sS____
Ps

K g = Cdf¥D y = sam e assingle jet;

W

%D . .
K, = C—df{aﬁl/P_Nﬁz half the single jet ;
P s

P . ] ]
Koo = X—S: tw ice the single jet :
f0

3.7 Valve Flow Forces

1. M omentum balance:Valve °ow forces arise because oftwo m ain reasons:

2 the acceleration of the °uid as it passes through the valve cham bers, w ith the valve
spoolheld stationary, and

2 the acceleration of the °uid w ithin the valve cham ber when the °ow rate is changed.

Consider the valve cross section shown in Figure 23. Application of the m om entum
theorem gives,

X g Z zz
F= = hodv+ 0 (50 ¢R)dA :
ot v A
W ede ne the acceleration length by
L - Fi hU dv
#Q
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Physically, L represents the length of the °uid that is accelerated when the °ow rate Q 1is
changed and isofthe orderofthe distance between the inletand outletportsofthe cham ber.
Considering the x{com ponent of the total force, the m om entum equation Is w ritten as,

Fy= w20, hU A, cos :

ot

The rst term on the right{hand side leads to \transient °ow forces", and the second to
\steady{state °ow forces".

2. Transient °ow forces: For the ori ce °ow,

527
Q = Cqwxy %(Pli Pi):

T herefore, s #
0Q _ 2 A——fx, Xy  0CP1i Pa) .
—=Cgw = P1i Py L e :
it ) it 2P, P, it
T he transient °ow force is
l/zL@i:
0t

Since the °ow may be changed by varying eirther x, or P, j P,, the transient °ow force
involves the rate of change ofboth of these term s.

3. Steady state ow force: R ecall that the discharge coet cient C4 is given by the product
of the velocity coez cient, C,, and contraction coet cient, C ,

Cog=0CyCc;
and
Q0
U2 - A25
A, = Cowxy:

T he steady{state “ow force is then given by:

2
U 2A , cosy = %S\—cosp: 2C4C wx,(P1j Pjy)cosy:
2

Typicalvaluesofangle y vs. x, curves are shown in Figure 24.

4. Total°ow force:Combining the previous equations, we get

#
a— d 0y Xy  0CP1j Py)
F, = LCqw 2% P,; P P A +
X d 2 1 Z@t 2PP1i P, it

2C 4Cywxy(P¢j Py)cosp:

Steady{state forces are always stabilizing forces: the change in force accom panying a change
in valve stroke tends to resist that change. Transient forces may be either stabilizing or
destabilizing.
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5. Force balance for a critical center spoolvalve: Consider a positive (downward, as in Fig-
ure 18) stroke ofthe valve. In the upper (high pressure) cham ber the °uid accelerates upward
and the reaction force is downward in the sam e direction as the stroke. T his is destabilizing
whereas in the lower (low pressure) cham ber the directions are opposite and the transient
force isstabilizing. Theoperating pressure dropsin theupperand lowercham bersarePgj P,
and P,j Po= P,,respectively,so that repeated application ofthe above equations gives the
follow ing forces due to the °ow :

2 transient,upper chanm ber:

. 4
a— 9 0y Xy OPsi P1)
i LiCqw 2Y% Psi P + p— ¢
i L1l 2 s i 1@,[ ZPPsipl T
2 transient, lower chanm ber:
A 1
qa— q_@xv Xy @PZ
L,Cqw 2% P + p—2=¢
2V d l Z@t 2I“’ 5 @t

2 steady state,upper cham ber:

2w x,C de(PS i Pl)COSU

2 steady state, lower cham ber:
2w X, C 4C P, cosp

where an upward reaction force, opposite to the stroking force, is taken as positive.

The pressure drops are
1
P, = E(PS+PL);
1
P, = E(Psi PL):
Then, the total force for this valve is:

Fe = 2wx,C4qCy(Ps j, PL)coSy

#
L 0x, 1 !
+ %L, L v i
R TR T L
Wwhere RN
Psij P
QL= Cawxy ——:

%
The rstpartis the steady state force, and the second part is the transient force.

Adding the inertia of the spoolm ass, M , the stroking force m ay be w ritten as

2
@xv+ Bf@xv

ot ot
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where:

b(l, i L 9
\

Is the dam ping coet cient due to transient °ow force;
Kg= 2wC4Cy(Ps i Pr)cospul 043w (Ps i PL)
Is the spring constant due to steady{state °ow force;

s
(L2 L1)QL _ Cowxy(Loi L) h
Z(Psi PL) 2 Psi Po

Is the load feedback due to transient °ow force. Valve dynam ics are generally analyzed w ith
P, invariant and only the valve stroke x, asan input. In that case the last term isnorm ally
neglected. Attempt is also made to make L, % L in order to elim inate the small and
som ewhatunpredictable e®ects associated w ith the transient °ow forces.

Bpy=

6. Flapper valve ow forces: In order to apply the m om entum theorem ,consider the control
volum e surrounding the interaction region and shown w ith dashed lines in Figure 25. F¢ is
an external force which is applied to hold the °apper in position. Transient °ow forces are

assum ed to be negligible so that the m om entum theorem for this problem is
zz

F= V%Y 6R)dA ;
A

where n Is the outward{pointing unit norm al vector at each point on the surface A of the
controlvolum e. For the upward direction

X
F=(Pai Pyt F¢

and zz
VY en)dA = juu( DJAY = KhulAy
A

Combining these resu lts w ith
- WD 2
N - 4 ]

we get
Fe= (P i P)AY + hu®Ay :

If losses in the jet supply duct are neglected, B ernoulli's equation m ay be used to give

1
P = P.ij EW

and if the pressures are expressed as gage valuesP,= 0. The resultis
- L
Fr= Pot zhu’ Ay

The jet exit velocity u m ay be expressed in term s of the apper geom etry by m eans of

the discharge coet cient: s

A 2P,

—h

_ 0
U—AN—Cdf

=

N %
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and )2

1

EWAN - cgfﬁpc: 440 2hp
T herefore, '
16C 2h?

D §

Itis im portant to rem em ber that this expression is for the upward force necessary to hold
the °apper in place against the downward °ow from the upper jet.

Fe= PAy + 44CAh2P = PAy L+

7. Application to the double jet *apper: For the double jet *apper shown in Figure 26 there
are two relevant °ow forces, one from each jet.

The downward force on the ®apper due to the upper jet is found by substituting
Pc= Py and h= Xgpij Xg:
W e get then,
Fi= PiAy + 4UC A (X0 i Xg)?Py:
Sim ilarly, for the upward force due to the lower jet

Fo= PoAy + 4UCE(Xeo+ Xg)Py:

The netdownward force is therefore,

h
Fii Fo= (Poi PAW + 44CE (Xeoi Xe)Pri (Xeot Xg)PP,

Note that if

then
Fii Fo= i 16%C P oXsoXs ;

indicating that for positive °apper de°ection the dynam ic e®ect of the °ow de°ection is
to create a net upward force (destabilizing) on the ®apper. In other words, the ®apper is
\attracted" to the throttled jet under the in®uence ofwhatcan be thought ofas a negative
spring constant.

If the expression in the brackets above is expanded, using

PL="Pii Py
We get:
82 i !23 e
2.2 X¢ Xt -
Fli F2 = PLAN + 41/4Cdef0 _41+ — 5P|_i 2—(P1| Pg)_
- X0 X0 >
8 ) 2 A !23 e
< X X XfoXs P1t Pp~=
= PLAy 1+ aucita s 2L 5y ogycitfell T2
: Ay X0 Ay PL =
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By design,
X%o
Ay ©

so that the second term in thecurly bracketsm ay beneglected. Ifthisexpression isevaluated
near center conditions
(Pit Po% Pg)

the nalresult for design purposes is
Fli FQ: PLAN i 81/4CdeP3Xf0Xf:

N ote again thatF,j F, isthe netdownward force; ie., in the direction opposite to positive
cappermotion.

4 HYDRAULIC POW ER ELEM ENTS

4.1 Introduction

So far,we have seen the follow ing:

1. Fluids/F low s:

2 E@ective bulk m odulus.
2 0rice°ows.
2 Leakage °ows.

2 For lam mar°ow:Q » ¢ P
For turbulent ®ow: Q » p¢_P.

N

2. Actuators:

2 |deal.
2 Losses: Torque | Flow.
2 Et ciencies.

3. Valves:

2 Spool, critical center, open center.

2 Flapper.

2 Valve operating curves: Q| = Q (Xy;PL)-

2 Valve coet cients: ¢ Q | = K¢ x,j Kc¢Py.
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Com bination ofvalve,actuator,and load characteristics produces the so{called hydrau lic

powerelem ent,schem atically shown in Figure 27. In general, there are four typesofhydrau lic
power elem ents:

2 Valve controlled m otor,VCM .
2 Valve controlled piston,VCP.
2 Pump controlled m otor,PCM .

2 Pump controlled piston,PCP.

W e present the analysis of the VCM in detail in the follow ing section.

4.2 Valve Controlled M otor

Consider the VCM shown in Figures 28 and 29. W e utilize the continuity equation

X X dv Vo dP
Qin i Q out = ﬁ*‘ —_q:ﬁ;
where
V = volume
= pressure

= e@ective bulk m odulus

and unlike our previous app lications of continuity, here we include com pressibility e@ects.
Applying this equation to Figure 28 we get,

dv Vi dP
Q1i Cin(PriP2)iCepPy = d—t1+ %(E_dtl;
dv V, dP

W e need to express the volumesV, and V, in term sofm otor param eters.

W ith reference to Figure 30 we have,
Vit V, = 2V, = const.

D Berentiating,

dvy, dv, )

T Dn b
and integrating,

Vi = Vot f(y);

Vo = Voi f(s):
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The load °ow is

_ 01+ 0.,
L 2 7
and substituting in the values ofQ ; and Q ,,
H Con T Vo d(Pij P
QL = Dyt Cim_+ ;m (P1iP2)+ﬁ¢%

A L]
+f(Hm) dP1+ dP2 .

2 dt dt

Since
P+ P,= Pg = const.
we have
dpP, dP2_0
it dt
and ifwe denote
V™ 2V,
we get i
Vi PL
=D + P+ —C——;
QL m“ﬂ Ctm L 4 e¢ dt )
w ith c
Cop = Cip ;m

For the valve we have,
QL= Kgxvi KPPy

W eneed a load description such that P, isdeterm ined by torque requirem ents. T he torque
delivered to the load isP D, . Therefore, torque balance gives,

PLDy = Jefy + Bopg + Gy + Ty

where T, is a static load torque. In sum m ary, the equations in the s{dom ain are

QL = DmUm3+CthL+4VftePL3;
Qi = Koxyi KcPos
PDy = JenS2+ ByfpS+ Gy + Ty ;
or
DnfnSt KeePrt CenPrs= KXy
PDy = Jip S+ BolpS+ Gy + Ty ;
Wwhere
Ke = K¢t Cq o
Cen = 4\%:

37



Sym bolically,we can see that we get an expression of the form
Wp = FX03TL) S

where [, is the output of the system and x,, T, the two inputs. Schem atically, this block
diagram s shown in Figure 31. An expanded block diagram 1is shown in Figure 32, where
the three basic elem ents,valve, m otor,and load can be identi ed. Since there are two inputs
to the system ,we can evaluate two distinct transfer functions:

2 Valve position input,x,, T, = 0:

P _ Kq=Du

Xy St 57 (Kot Cops)(Jes?t Byst 6)°

2 Load torque input,T_,x, = O0:

Un _ i 77Kt Cans) .
TL s+ 55 (Kot Cons)Jes2+ Bys+ 6)°

Sim pli cations to characteristic equation :
The general form of the characteristic equation is,

1
St D_Q(Kce+ Ccms)(Jt32+ BnsSt G): 0:
m

Spring loads are usually negligib le,

6 =03
SO +#
T |
KeeBo H . Con Je
s 1+ 1+ s 1+ —s =0
Dn% Kce Bm
Usually,
KceBm 1-
pz ¢
so that the characteristic equation becom es
C - )
s KaBo Cadeg, MI Ca T
Dn% KceBm Bm Kce -
This has the forn , i '
2 + )
s 77t 2|'—hs+ 1 =0;
*h = h
which represents a type{l system where
S 2
Iy = ok ;
\]tccm



Is the hydraulic undam ped natural frequency, and

and the signi cance of the e@ective bulk m odulus on hydraulic natural frequency is evident.
The hydraulic spring constant is

D 2 47D 2
Kh_ ]
Ccm Vt
and the hydraulic dam ping ratio, for8, = 0,
s S___
poe Lofe Ju o Ke JCe
2 Dm Ccm Dm Vt

To sum m arize, the transfer functions are w ritten as:

2 Due to valve position:

K
Hn L s
- - = L1l
2
v o g T 2fs+ 1
2 Due to load torque: = -
K ce Vv
Um I I% 1+ 4_eKtce o
- - | e LI
oo Tt 2t ]
Atvery low ! inputswe see that
K
Hn h D_qxv;

m

so that the term K (=D , 1is an expression of the steady state gain of the system . For critical

center valves, s s

Ps PL
Kyg=Cqw — 1j —;
e vty b py

so that the steady state gain w ill decrease at loads away from null. At the m axim um power
setting

2
PL = gPs;

so that )
g = 173 ;

K q (max power)
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which amounts to a 58% decrease in °ow gain from nulltom aximum power. T husa positive
gain m argin atnull load conditionsw illensure stability athigher loads. C onversely, a systen
that is stable under load will not necessarily he stable under no load conditions.

Consider the transfer function due to load torque: p, =T, . It isusually called \dynam ic
com pliance™ since j T =y, isa \stil®ness". For slow ly varying inputs we see that

D2
TLI/AiKm

ce

[P

Since the ratio D 2 =K . isusually very large,a sn all decrease in m otor speed leads to a large
increase in the resisting load torque: thism eans that the hydraulic system is quite \sti®".

43 VCM in State Space

T he governing equations are:

2 yalve °ow :
QL= Kgxvi KcPrs;

2 motor °ow dem and:
Qu=Dnpy + CtmPL+ Cop Py ;

2 Joad dem and: )
PLDo = Jefh + Bothy +Gpy + T

W eeliminate Q . and rearrange,

1

P, = C (iDmUmiKcePL'*'Kqu);
cm
i 1
ﬁm = J_(iBm“miG“m+DmPLiTL):
t
Ifwe de ne,
h K
state vector x = b Hn Py
h K
input vector u = Xv To
h )
outputvector 'y = Q_ W M Py

the state space equations are:
2; 3 2 2 3 2 3..
p NP N P S 0 i1l #

m i B 3|~lﬂ1
Qu 5-9 1 0 0 L8y 5+ 8 o o £ X

P—L | Dm:Ccm 0 | Kce:Ccm PL Kq:Ccm 0
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and

2L3200iKc32pﬂ32Kq03.. y
" zgl 0 0 z go oz Xy
gpm 01 0 ng 5480 o T,
PL 00 1 . 0 0
or, in com pact notation,
X = Ax+Bu;
y = Cx+Du

4.4 Valve Controlled P iston

A Ithough itispossible to go through the analysisofthe valve controlled piston (VCP),shown
in Figure 33, In the sam e way as for the VCM , it is easier to w rite the equations directly by
enforcing the analogies between rotational and translational system s:

VPO
D, |1 A, volume displaced perunitm otion
TR
G L1 K

TheVCP equations then are,

QL = quviKcPL;
Vi
Q|_ = ApSXp+CtpPL+ 4TSP|_;
[
APL = M sPxpt Bosx,+ K xpt Fyo:

Both systems(VCM and VCP)havethesam e internaland externalleakage characteristics
and both system s are controlled by an idealized critical center valve. W ith m oderate load
dam ping (B (K ce=A g ¢ 1) and no spring load we have:

=~

q

Valve gain constant T
p

Natural frequency 12 =

Fluid spring constant K , =

S

- - Kce _eM t Bp Vt
Damping ratio £, = + -

Ping "R, Ve R, T

T he transfer function is,

_ (K q:A p)Xvi (K ce:A S)[1+ (S:Zih!h)]FL .
P s[(s=1h)2+ (2+,=14)s + 1]
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A llprevious rem arks concerning the response and com pliance of the VCM are app licable to
the VCP with the application of these analogies.

45 Pump Controlled M otor

Pump controlled m otors are used in applications requiring high horsepower. Com pared to
VCM s, however, they experience slower response. In the PCM the valve is replaced by a
variable displacem ent pum p and a replenishm ent system ,asshown in Figure 34. T he pum p
supp lies high pressure °uid in response to load dem ands; the m otor speed and direction of
rotation m ay be controlled by varying the pum p stroke. T he replenishm ent system m aintains
aconstant low return pressure,P .. From a controlspointofview the basic di®erence hetw een
valve control and pum p control is that in the pum p system only the high pressure side is
changed to respond to changing loads.

Thepumpmustsupply itsown and m otor leakage °ow s, com pressibility °ow s,and power
°ows,asshown in Figure 35. Applying continuity to the °ow s shown in the gure,we get

Vo dP
Cp= Dot # Copt Cen )Pt Cipt Cin )Pui Pr)t =—0pt
e
Ifwe de ne,
0,
D, = L
p Np’
D
K, = =£;
p A ’
Cte = Cept Cent Cipt Cip
Cit = Cipt Cip
where
D, = volumetric displacem ent
K, = displacem ent gradient of pum p
No = pump speed
A = punmp stroke angle
we get
, Vo dP
0p= KoNpA =D oy + CtPyj CitPrt _—°¢d—t1:
e

IfT, is the torque generated by the m otor, the torque balance equation hecom es:

Ty
Ty

,t(upli Pr)Dm ;
Jefbo + Bty + Gy + Ty ;
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where an internal friction force sign(uy, )¢(P.+ P,)C¢D , has been neglected. T herefore, if
=1,

PDy = Jefh + Bl + G + P Dy + Ty

Tosummarize, the equations in the s{dom ain are

, v
KN A+ CiPr= Dosy + CPyt =25 ;

e

Ple:\]tSZUm+BmS“m+G“m+PrDm+TL:

Ifweassume G = 0and B,C=D2 ¢ 1,the responseis

33 - 33 -
LA s T e s b
il — | ol 1L L]
s S+ 2ig+ ]
“h
where
S_
!h = eD %
VthS_ '
4 = £¢C_t e‘]t+ £¢B_m _VO
2 Dm VO 2 Dm e\]t

Usually P, =const. and so we can assum e it to be zero in the above transfer function, since
in reality it represents ¢ P,; i.e.,deviations from a nom inalvalue.

N ote that if the valve and pum p system s are of corresponding sizes,
Vil 2V ;

so that q

Pheow) _

— DZ S
€ m
Volt  —
=57

Vil

=]

2
Vo 2

ol
A~ |

= 0:707 :

~

Phven)

This is because the °uid spring in the high pressure side of the PCM isnot balanced by
a spring on the low pressure side as in the case of the VCM . The PCM is thus slower to
respond than the VCM .Actually,V < 2V, because valves are sm aller than pum ps,and this
aggravates the situation. H ow ever, since K ;N , ism uch m ore constant and predictable than
Kq,PCM systemsaremore predictahle w ith the above expressions. N ote also that, if B, is
negligib le,

10y @ edt S —
Iheow) - 20 Vo 1o Ce Ve, o050t
= = = —¢ — ¥ 0:707 :
ih(VCM) [K)“ ;it 2 Kce VO Kce

Usually C¢< K ¢ so thatPCM "sare less dam ped than VCM *sand often require intentional
leakage pathsto increasedam ping and ensure stability. Finally,wenote the follow ing analogy
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between VCM and PCM :

(vVen) (PCM)
X, L1 A
Kg I 1 KN,
P, L1 P,
Ke 1 Cy

4.6 Nonlinear A spects
Consider the VCP system , for dem onstration. Norm ally, the linearized valve expression
Qu = Koxvi KcPy
Isused where K ¢,K ¢ are evaluated at the nullpoint,
Xy=0; P,=0; Q_.=0:

For large deviations from nom inal, a nonlinear expression m ust be em ployed. For a critical

center valve s_ s__
Ps Xy PL
= C —WXx, 1j —¢—1:
QL d m v | X P
Continuity gives,
Ve dPp
QL= Apvpt CePy + ﬁ(p_dt .

The sim pli ed equation ofm otion for the piston, assum ing inertial load only, is

PLApg= M vy

Substituting,
s— Y )
Co Poyy ¥y Kog Mo (0% Ve 00, Colle Vs, v
Ay % M) Pshy dt 4 ZAZ dt? AL dt

anonlinear 0 DE describing the VCP com bination. IfP =P issm all,

S P 1 :
Xv L Xv L

I AL ST A S S
" Ps T 2 P

which isabout 10% o® for P =Ps = 0:6. Using this sim pli cation, the equation becom es

d2v, = 21 dvp , . CoW Py

V s

b=
h=]
=

44



where

S= 2
'y = m;
Vel e "L .
Cow Jxvj Ps My,
ty = = —+ ;
h R T Y

Thus, although +, depends on x,; ie., the operating point, the hydraulic natural frequency
rem ains the sam e. T hese expressions can be used for operation away from null

5 ELECTROHYDRAULIC SERVOVALVES

5.1 Introduction

Hydraulic actuators are ideal for generating power output; when it com es to signalm anip-
ulation and feedback m easurem ent, though, electrical devices are usually the choice. The
connection between hydraulic actuators and electric devices is done through the electrohy-
draulic servovalve. Its function is to convert low power electrical signals into m otion of a
valve which controls ow to a hydraulic actuator. W e have two m ain types of servovalves:
2 Single{stage servovalve: a torque directly positions a spool valve.
2 Two{stage servovavlve: a apper valve is used as a rst stage pre-am p, and a spool
valve as a second stage.
A ccording to the type of feedback used, we have:

2 spoolposition feedback,
2 Joad pressure feedback,

2 Joad °ow feedback.

5.2 Permanent M agnetTorque M otors

A perm anentm agnet torque m otor, schem atically shown in Figure 36, is the m ost popular
device for stroking servovalves from an electrical signal. T he torque or force produced is
proportional to the input current. W e want to develop the torque m otor transfer function
betw een,

>
1

output;
nput:

D
(=
1
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For the inputam pli erwe have,
€1 = €= 1eg .
where
1z ampliergain :
For the arm ature coils,

) ) N dA,
€1t €= 2%eg= (Rt rp)ti+ W¢ TR
where
R. = coil resistance ;
r, = any internal resistance ;
¢l = 0j by,
2N . dA, )
¢ induced voltage due to current °ow
10° © dt J
in the m oving arm ature ;
A, = totalmagnetic °ux through the arm ature :

Asan aside,we rem ind that \0O hm "sLaw"™ for a m agnetic circuit is

W = AR ;
where
M = forceormonment;
A = magnetic °ux ;
R = reluctance :

The arm ature °ux is,

) X N .
ho= 2hg=—+ —0Ci;
Rg

where
Ag = °ux in each gap with arm ature at neutral
(perm anent °ux) ;
NC o o H H H
o = °ux due to current °ow i windings:
9
Substituting:
where,
X
ko= 2’
_ isdy i
Kp - 2£ 10l _N cAg y
g
N2
Lo = 101°-%



Thearmature torque is,
Tg= KeCi+ Kpp;
where

K¢
K

arm ature torque constant ;
magnetic torque spring constant :

M echanical torque balance gives,
Tg= JaSit Bospt Kopt Ty ;

where the rstthree term smodelthe arm ature structure and the last term , T, ,isthe output
torque which is the product ofthe arm a and the valve stroking force. Ifwe elin inate T4 we
get,

KeCi= Ja32u+ Baspt (Kai Kot Ty

where we can see that the m agnetic spring constant appears as a negative spring. Ifwe

assum e the arm ature dam ping, B ., is negligible and we elim inate ¢ 1 we get the transfer
function,

1 Hooo T
Koeqyj — 1+ — T
.- UKL K, L,
s? 52 S ’
e f+ e f+ %t 1
112 1) = 12 1 — I, 1 —
K a K a K 4
where
2K 1

i Ret rp)Kai Ko)’
Is the static gain constant,

. Ret rp
e 2L,
Is the arm ature circuit break frequency, and
S
K
!m = _as
Ja
Is the natural frequency ofarm ature.
A sim pli ed transfer function is,
L
Koegj ——— 1+ — T,
- Kai Ka a4 .
H= S 2 -
24l o+ 270s+ 1
I 12 Iy
where
lr 1/4 a s
N T
1 K,
o W ¢
" 2K,



T he transfer function between yand ¢ 1is,

K¢ _
Jas?4 Bast (Kai Ky)~

L
¢

From the expression for f we can see that the steady state sti®ness of the torque m otor to
loads is in absolute value,

¢ T,
CH =0
which is less than the m echanical sti®ness K ,.

=Kai Kn;

5.3 Single{Stage EHD Servovalves

In this case a torque m otor is directly attached to a four{way spoolvalve. The spoolvalve
Is positioned by the torque m otor and controls °ow to a hydraulic actuator, as shown in
Figure 37. A Ithough °appervalvescan also be used to form single{stage valves, they are not
suitable for direct controlofa load because of leakage characteristics. T he stroking force is,

i, d%xy i : :
Fi= N VdT+ 0:43w (PS i PL)XV ,

where the rst term is the inertia force and the second term is the steady{state °ow force.
Ifwe linearize the last expression in P, x,,we get

Fi= Moys,+ 043w (Ps i Puy)xvi 043wx,PL :
Ifr represents the radius arm of the torque m otor,
Xy = Tl
and the stroking m om ent is given by

Fir= M s2rip+ 043w r2(Ps i PLoui 043rwx,, Py :

Ja = armature inertia
K, = mechanical torsion spring constant ofarm ature pivot

then the total torque developed on the arm ature due to current input is
Ta= @at roW )s?u+ Ko+ 043wr?(Ps i P )i 0:43rwx,,P, :

The last term , j 0:43rw x,,P_ is the load torque T, . Therefore, the transfer function is
sin ilar to the one produced in the previous section,

8] T ! M T

S S t 1 _ S

—+ 1 —2+2—°s+1p:K0egi3—l+—TL;
!r !0 !0 atliE:t |a
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where,

Kag = Ko+ 043r2w(Psi PyL,)
¢ 2K
TRt K el KK ay)
12 = &

o Jat 12,

and ., 1y,and t, are the sam e as before.

N ow assum e that the valve controls a m otor of displacem ent D , which, say. overcom es
som e inertia J¢. T hen,
PLDm = \]tSZUm :

Then the VCM transfer function is,

K4
ul: ] Dm L -
X 52 + ’
Voos 42 s4 1
|12 |
'h .h
T herefore, if
g; = system input

Uy system output

the block diagram becom es as shown in Figure 38. W e note that because of the positive
feedback, the system m ay experience stability problem s.

The open loop transfer function is:

H S‘IT
i K s 1+|—
- i i - a 'l -
G H '”32 5 '”322 %) T H T
—t2—s+1 —+2—=s+1 —+1
e Ly 1o 1o I,
where
(= 0:43r2wK gXyoJt

Kaei Kp)2 '’
and the j sign is used to convert the (+ ;+) summ ing point into (+ ;j ). Since electronic

responses are m uch faster than m echanical responses, !¢ A !y,. In addition, !, % 1I,.
T herefore,

_ i K18
GH = 32 5
—t2—s+1
|2 I
*h = h
T he characteristic equation is
1+G6GH =0



or i 1
s? th
—*t 2—j Ky s+ 1=20;
12 Iy

and for stability we can see thatwe m ust have,

+
K< 2|'—h:
th
Now,
(- 0:A43r WK ¢Xvode _ 0:43r2wa0¢K_q¢KcJt_
(Kaei Ka)D2  Kari Ky Ko D27
and we have
K 2(Ps i P .
Ko 2CPsi Pro) (critical center valve)
Kc XVo
K t
C‘]t: 2_h
D 2 Ly
043w (Ps i Pr,)” Kg
Kooz Kot rKs:
T hen
2r2Kf 2%,
K1: -,
Kaij Ko+ r2ke 1y
and for stab ility
2
ZFKf <1
or )
ELALE S 1;
Kai Km
or

(°ow force spring rate)
(netspring rate of torque m otor)

In order to study the static perform ance of the servovalve,we assum e steady state oper-
ation,

Td = Kt¢ i+ Km“s
Te = Kapt 043uwr?(Psj PL)u:
Torque balance requires
Tg= T,
and K
X .
TSRS L ¢i:

r Ko+ 0:43wr2(Psj PL)j K,
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The valve °ow Is s
1
QL= Cawxy %(Psi PL);

or s
Q Cqw %(PSiPL)r(ti
KLk, ST
K—t1+|<R “f
where
(o= 0:43wrpg
Kai Ko

LetQ, = Qowhen ¢ 1= ¢ iyqa,PL = 0,and no °ow force (Kg = 0):
S
rK thW ¢ imax PS .
Kai Ky b

T hen the °ow {pressure curves for the single{stage servovalve are w ritten as:
S

Qo=

P
“f ¢ i
1y I’Tq; :
= p, -
1+ Ky 1iP—L ¢l ax
S

L
Qo

54 Two{Stage Servovalve w ith P osition Feedback

Single{stage servovalves are relatively sim ple and inexpensive but have two m ajor fau lts.
The °ow capacity is lin ited because steady state “ow forces on the spool tend to stall the
torque m otor and lim it the valve stroke. The other disadvantage is the fact that stab ility
depends to a large extenton the load dynanm ics. A lthough thiscan bem inim ized by proper
servovalve design, each case should be investigated to assure stability. Two{stage servovalves
overcom e these disadvantages of lim ited °ow capacity and instability. The m ost com m on
type are two{stage servovalves w ith position feedback. T his can be achieved in two basic
ways: direct position feedback as shown in Figure 39, and force feedback where we use a
spring to convert position to a force signalwhich is fed back to the torque m otor.

Consider the two{stage servovalve with °apper{nozzle pilot stage and direct position

feedback of Figure 39. T he hasic torque{m otor transfer function is unchanged,

. BT
Koegi 7 1+ 57— Tu
U= K &l K a_y
o) s T2

1+ — —
I ¢

tp
+ 2—s+ 1
)

where

K ae mechanical plus °ow force spring constant
Kae = Kai r2(84%C&Psxso):
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W hatwe need is the transfer function

b b
X ry
Torque m otor/F lapper valve
The total force on the ®apper is X
F = F1| F2

and this is the force due to pressure inbalance plus the force due to jet de°ection,
Fli FQ: ANPLp i 81/4CdeXf0XfP3 :

Consider a m otion of the °apper to the left (x; > 0). This causes the left hand °ow to be
restricted and the pressure d®erential P, = Py, j P,, > 0. Therefore, the pressure force
Is restoring (to the right). Since the °apper nozzles are built into the valve, the net °apper
motion is (X¢ j Xy) and this must replace x¢ In the above expression:

Fii Fo= AyPr, i BUC oxeoPs(Xsi Xy):
The torque is
(F1| Fg)r: rANPLP u 8%erZfo0P3XVi B%erZfoOPSXf;

where the “rst two term s in the right hand side (rAy Py, + 8%rC ZxgoPgsx,) represent T,
and the last term is used to rede ne K ,,the arm ature spring rate.

In order to go from the ®apper to the spoolvalve:

>
<
[}

output
nput:

Xx i Xy

T he transfer function between x, and xfj X, containsa quadratic termn (due to the hydrau lic
natural frequency and dam ping ratio) and a rst{order lag due to the ®apper:

qu
Xy ] i PeAy L -
] -7 2 = -
X X S S t
fl v |_+1 = +2|hp3+1
.f 'hp .hp

To go from x, to P, ,we use force balance:

d2x,
dt2

PL AV:MV

P

+ 043w (Ps i PL)xy:

Ifwe linearize around P, = 0,we get

AP, = M ys®xy+ 0:43WPsx, i 043wx,,PyL :
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Finally,we go to the hydraulic m otor and the ineartial load,

PLDy = \]tSZUm ;

E_l
“L— j Dy ¥
= 1

X S t
Yoos e 2ls+

Based on the above equations, we can draw the block diagram of the com plete system as
shown in Figure 40.

B lock diagram analysis
Thereare two m ain feedback loops:

G, : aspoolpositioning loop
G,H, : apressure feedback loop :

W e have:
Xo o _6s
Xt 1+ 64
K qp
61:A 1 lgAV 1
+
1+ S 4 aMgy g
I . Pho
Ifl¢ ¢ 1 then,
K gp
6= — Ay L
+
s S+ 2Mgy g
12 !
hp hp
and the requirem ent for stability is
K
!hv:< o ;
where "
K - qp,
vp Av

Is the velocity static error coez cient.

If!s¢ !y, butnotzero, then the characteristic equation is

1+ G6G4=0;
or ; ! i !
S L thp 2 ihp!f _ .
|—3+ |—2+ 2— s§°+ 1+2| S+(!f+KVp)—0.
“hp “hp *hp =hp
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T he condition for stab ility is

i Ly !
! t thp!
St 2 1 22D (Lt K ) > 0
“hp hp - hp hp
or i Ly !
K ! ! !
Wy Do Tk, 14 2b,——
L, ! ! !
p hp hp hp
or 2 i 1,3
Kvp 4 - f !f 5
< 2y, Mt 24,1+ L5
|h ] ]
- hp =hp = hp

and to rst{order in !¢=1y,,

A
|
vp - f
B < 2y L4 gy
= hp “hp

=~

Nextwe consider the pressure feedback loop. A reduced block diagram for this is show n
in Figure 41. Sim li cation of this results in

b1y pe = L 4
1+ 6 S S 1 K ’
' Pl ot 2y 2 s ]
K vp “hp  thp hp
which requires that
2tnp % —F;
hp
e 0:43wP g !
A3w S t
> L 2 hS+ 1
PLl/ Ay ! Iy ]
— 32 ]
Xy o254 1
|2 I
*h = h
which requires that
o, 0:43wPs
“hoé 0
If, furtherm ore,
Kvp(', !hp,
then 5 4
1 i .
1+614 S +15
K vp
and
r2(8%C$P3Xf0+ rZANP;';—
GZHZ:E‘ 'ﬁeiZKm L
S S 1o
t1l S+ 2—=s+1
K vp I o
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Themaximum value occursnear 'y A K ,,and

P P

—t Yo 043w ﬁ X

The eBectof the feedback loop m ay therefore be m inim ized by ensuring that:

r2(8%C$P3Xf0)+ (AN:A V)(0:43W r2P3)< 1
Kaei Km

jG ZH ij ax -

W ith the pressure feedback loop thus m inim ized, we m ay approxim ate the servovalve by
Q1 = K ¢x, for the no load,P, = 0,°0w):

e, e, Hs T R
’ ’ 2+l o+ 208+ 1 '
, 17" T,
TR !EKOZK‘* L -
s s t ’
1+ o425+ 1
Kvw 1o 0

for 1, large.

Steady State Perform ance
W e interpret the block diagram of Figure 40 for low frequency inputs. T he torque m otor is

TL X f
= K ge = —
S OV I
Thespoolposition is given by .
f
Xy = ’
v 1+Av!f
qu
where
o 0A3WPSK ¢
- f —A\Z, ’
and
Ayle _ 043wPs K¢ _ 043wPs
qu AV qu AVK pp
By de nition,
Ps
Koz —;
pp X0
and
Ayl _ 0:43w X¢q -4t 0_43xﬂ_
K qp Ay ody
Since
Xf0 ¢ dv;
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it follow s that at steady state

Xv % X5 :
The load torque is " \ o
TL=r BUCLPsxgo+ . C043wPs X, :

v

Ifwe combine the above equations and elim inate T, x¢, we can solve for

X_V: rKo(KaeéKm,) .
B¢ (Kai Kp)+r? ‘;NV 043wPsg

where we have substitu ted
K ae - K a i r2(81/4c dePSXfO) :

T he steady{state voltage to current ratio is

¢i_ 21 _KO(KaeiKm)_
g Rct 1y K ¢ '
Ifwe use P
Kg= 0#3wrl—>—;
i Kai Ko
we get
X_"—X_"q;e_g = Ky -
¢i €y ¢i (KaiKm)+ r2 AW’%{-O:‘l:")WPS
i e _
(KaiKm)1+KR;>\_NV
If ,
Kp—; 1
RAV(,
it follow s that
Xy _ rK ¢ ]
i Kaj Ky
The load °ow is
s 000
1 CWH ﬂ _q—
QL:CdWXv %(PSiPL):‘ﬁdﬁﬁ_—vid;'PsiPL:
Ifwede ne
" _de ”X_\,ﬂ_
S
and aq—

QLmax:K1¢ imax PS,
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we get the equation for the °ow {pressure curves

0. _ ¢ 1 P,
QLmax ¢im ax PS -
Comparison w ith single state valve:
W e have A
N
+
Qsingle stage .~ T " rH,
- | P 1]
QUtostage 14, 1; L
S
If )
Kg% 1  and d 1
R v
it follow s
(Qt)single stage _ I
QUwostage PL
Ps

Since P, < P5 we can see that

Q L)sing|e stage < (0 L)tWO stage >

which shows that single stage servovalves have lim ited °ow capacity com pared to two stage
valves.

6 ELECTROHYDRAULIC SERVOMECHANISM S

A schem atic representation ofthem aterialcovered so farisshown in Figure 42. Incorporation
of external feedback to the servovalve/VCM produces the so{called servom echanism , w hich
Is the sub ject of this chapter.

6.1 D esign Considerations

1. Supply Pressure: Som e of the relevant features are:

2 High pressure results in:

{ Low system speci ¢ weight.
{ Smaller trapped volunm es.

{ High bulk modulus.

{ B etter (faster) respnse.
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{ W orse stability.
2 Low pressure results in:

{ Low leakage.
{ Low therm al losses.
{ Low cost.

{ Low m aintenance.

2. Power: Neglecting inet ciencies, the power P is
P=PQy;
and s
1
QL = Cawxy %(Ps i PL):
M axim um power transfer to the load occurs at
2
P, = gps :
W e can see thatwe have no power in two cases:

2 p_ = 0;ie.,allmotion,nopush (Py= P,= 3Pg);

2P =PsorQ.=0;1e.,allpush nomotion P;= Ps;P,=0).

3. Actuator: It must be large enough to handle loads during operation. The hydraulic
natural frequency mustbe large enough to avoid potential resonance.

4. GearRatio: Suppose we need a 10in®=rev displacem ent. There is a num ber of ways to
achieve this. W e can use:

2 10in3=rev m otor w ith direct drive (gear ratio n = 1),
2 5in3=rev motor w ith 2 :1 gear ratio n,

2 2in3=rev motor w ith 5 : 1 gear ratio n.
Asn is decreased:

2 torque to inertia ratio is increased (the less inertia the beter),
2 m inim ize nonlinear e@ects,

2 petter sti®ness,
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2 Jower operating speeds ) better reliability.
A'sn is increased:

2 hydraulic natural frequency is increased,

2 sm aller m otor ) less cost.

The best gear ratio is the sm allest ratio w hich w ill give large enough
(adequate) hydraulic natural frequency.

There are two basic con gurations ofelectrohydraulic servom echanism s:

2 position control, and

2 velocity control.

6.2 Position Control Servos

The basic piece ofadditional inform ation is the error signal derived from position feedback
and generated by synchronous m otors. T here are, typically, two gains involved as shown in
Figure 43,
synchro gain K, = .
T T
€ .
es

error am pli er gain Kqg =

The complete block diagram s shown in Figure 44. W e have the follow ing individual
transfer functions:

]

Ue = KeKd;
Xy B K_TSA .
P = T <2 R
e t
’ e R Ry L
| !% o b
oy Ke gy W (L
D, ; 2 4 oK o no.
“m - 2 + = 3
S |—2+2|_—h3+1
" h = h
[
U n’
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Theopen loop gain function is

Avz i (R & L L:
s s s " s £
s —+ 1 —+1 4205+ 1 +2g+ 1
ll 9 |12 | |2 |
- - .0 .0 'h .h

N eglecting all resonances higher than !, and assum ing that there are none lower,

Ay = —— L I
S th
S |—2+ 2|—S+ 1
" h = h
where ( ]
K= KJdKS¢D;¢E;
Is the velocity error coet cient. T herefore,we have a type{l system ,w ith position error
ep= 0;
and velocity error,
1
gy = —:
\ KV

T he condition for stability can be easily obtained,

Ky < 2,1 :

The response of the closed{loop position control system is:

e = Ay ; 1 .

T ) Y ¥
e Lt A S Si2lsr 1 41
!h !h

\

or
“_C%H i 21 L
s S +- ’
e 734 ——t 225+ ]
Iy 12, 1
where
'y % Ky
lC 1/4 lhs
Ky
t Yt
<c h —hIZ!h

Bandw idth: Usually de ned as the frequency at which the am plitude ratio falls to 0:707 (3
db down) of its low frequency value,

Fe— pl—_: i 3db:
Hr 2
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In our case,

. 82 91
Hr My M= =2 A | L3 £l >
1+ — M4 — S+ 2
!b =z "c ! c ?

'y
and for the bandw idth,
1 1
p_i: "‘¢2;
1+ £
‘b
or (
Py 1yt Ky = KeKszanm :

which means that !, is the bandw idth. W e can see in it the in°uence of several factors,

Ke : synchrooutputgain ;
K¢ : synchroamplier;
Ks : servovalve power am pli er;

K q -

0 valve/m otor gain constant ;
mn
1 ]
- gear ratio e@ect :

6.3 Velocity ControlServos

Assum ing that !y is the only dom inant frequency, we can construct the approxin ate block
diagram shown in Figure 45. T he open loop transfer function is,

Ko

2
s7 ¢

2o+ 2 s+ 1
|2 |

*h = h

W e can see thatwe have a type{0 system w ith position error coez cient,




A Bod§ diagram isshown in Figure 46. The m agnitude is

I K
Awl-= 2" I, ﬂ21-7§ A 2p 1 !2;1:2 ’
H Th-
Sl — * -
- Iy I -
and the phase angle |
Zihl-—
A= tan”—p'!—“ﬁ:

The system 1is stable only because loop dynam ics are so sim ply represented. The phase
margin is dangerously sm all, especially if t; is sm all. 0 ther lags, such as those associated
w ith the servovalve can easily destabilize the loop. T herefore:

E lectrohydraulic velocity control servos m ust always be com pensated to ensure
stability if operating about null

The closed loop response is given by,

“‘m_: AVU = Kp -
1+ A s? t '
o r ' ¥+2ﬁ3+(Kp+l)
The steady{state response to a step input is:
A |
L O R
Bar o ss KP+ 1
and i 1
|"Le = 1 KP - 1 .
Mo r ss_ IKP+1_KP+1-

Note thatunlessK , isvery large (which isprohibited for stability reasons), there isalwvays a
steady{state o®@set given by 1=(K ,+ 1). Thiso®setdependsupon K q which, in turn depends
upon the operating point. C om pensation, is therefore needed.

Compensation m ay also be needed in position control servos,as Figure 47 dem onstrates.
Ifthe resonantpeak ofthe quadratic risesabove unity gain, then the system becom esunstable
since the criticalpointofthe Nyquistdiagram would be encircled. E ven if stability were not
an issue, com pensation would behighly desirab le to raise the value ofK , so that steady{state
error is reduced.

6.4 Compensation

Com pensation is often used in servom echanism s to increase low frequency gain or, as in
velocity controlservos, to decrease low frequency gain to ensure stability. A com m on m ethod
Is to introduce a lag com pensation network at an appropriate location in the loop.
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Such networks are constructed based on the schem atic electrical network of Figure 48.
T he relevant equations are:

€ij €= @i LRI,
e iR + 1&idt'
0 C ]
or
g _ 1+RCs |
€j 1+ ORCs
De ning
P o= b
=Irc RC ]
we get
1+i
eO_ !rc -
e 14 S5
i 1+
(rc=0)

Thisnetwork is called:

2 Jag element if@ > 1,

2 lead elementif® < 1,

where

0 lag to lead ratio ;
e lead corner frequency :

To see this consider the phase angle of the elem ent,
, ; ”! ﬂ ) ”!@ﬂ
A= tan® — j tan®' —

Pre s re

and observe that it is positive if® < 1 and negative if@ > 1.

For the position servo, the com pensated loop gain is

81 |
S
KVC 1+|_
- o1 1
AC(S) H S ﬂ 32 ]
s 1+ —@ . A
[ !hz+2!=tth+1
where
Kve= 0K, ;

Is the com pensated velocity coet cient. Q uantities !, £, are xed. W e need to choose @,
Io,Kye,and 1. Wecan do this as follow s:
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1. Determ ine the frequency between !,. and !, where the phase lag ism inimum . The
gain crossover frequency is!. and we can obtain the m axim um phase m argin.

2. Adjust !, to get adequate phase m argin; 50 or 60 degreesw ill do.

3. Choose ® to produce adequate K ,. for acceptable steady{state error. P ractical con-
siderations lim it usually the value of® to about 10 or so.

6.5 Compensation for Stab ility

The goalofthe com pensation in this case is to increase stability, or bring the gain crossover
frequency down to a value below 'y. For this a pure lag network, Figure 50, is sut cient.
T he relevant equations are,

€ _ 1 .
e g4 S
i 1+
(Yre=0)
where
o= b
=Irc RC ]
or
€ _ 1
g 14 T’
where 9
Tc: |_

For a system w ith gain constant K ,, the corner frequency is determ ined by

1 1. .
lo-Tc K,

where ! is the desired gain crossover frequency, ! < !,. Com puting T, and by xing @ to
between 10 and 20, the valuesofR and C can be chosen. The loop gain beconm es,

Ave = Av

(1+ Tes) Sy

as illustrated in Figure 51.

IfRouth™s criterion is app lied to the characteristic equation of the closed loop com pen-
sated system
1+ Aw=0;

the criterion for stability is
A |
1 2t .
LK) e o (L 201470
C -
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and, if 2+, T .1, A 1,this reduces to

or,w ith the crossover frequency given by

| - K_p .

= C Tc y
the stability condition becon es

o< 24,0yt

T he corner frequency of the lag is therefore given by

| . Zih!h_
Kp Kp

W ith typicalvaluesoft, = 0:1 to 0:2 (nearnull) the corner frequency isin the range !, < (0:2
to 0:4)! =K , with a crossover frequency m argin given by !'.< (0:2 to 0:4)!,. N ote that the
above analysis becom es exact if the rstorder lag is replaced by a pure integrator 1=Ts.

6.6 G ear Ratiosin Rotary D rives

The purpose of this section is to show that:

A's the gear ratio n is increased, the ratio of torque to inertia at the load is
decreased and the hydraulic natural frequency is increased.

Using the con guration shown in Figure 52, we have:

Ty = \]mﬁm*‘[:trp;
Ferg = T+ JUf

where Fy represents the contact force between the two drives. T herefore,

" r "
Ty = Jofhy + r—"(TL D E
g

Ifwe denote
r_p: U_L: i'
rg M n’
then
neoooy T
_ L L
Tz Jot 3 ﬁm+n—,
where
J
n—LZ = load torque re®ected to m otor shaft
T ] )
n—L = inertia of load re°ected to m otor shaft:
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W e can also w rite:

2 fh TL )
{pn®+ JL)n—2+ o Tw s
or )
e+ IO+ T =0Ty ;
where
Jon? = inertia of m otor re®ected to output shaft
nTy, = motoroutput torque referred to output shaft:

Formaximum acceleration of the load, we must m axin ize the ratio of torque to inertia

at the bad, i.e.,
nT,

\]m n2+ \]|_ ’
or,since for a given load and speed,nT, isconstant,

maxim ize

minim ize n?J,

Let the subscript G denote geared and D direct drive. The motor inertia is em pirically
shown to be

K ﬂ1:5
Jy » £ :
n
T herefore, q
n’(l )s _ 2”£ o E

(n o i n
It follow s then that as gear ratio increases, lbad acceleration decreases.

The inertia to be used in the hydraulic natural frequency is the m otor inertia plus the
load inertia re°ected to the m otor shaft. R ecall that,

[ L B
|h = 4 eD”%
' Vide
N ow
Vt» Dm ’
and ]
Je= Jp + n—;,
or, since
H1ﬂ125
Jop » = » D 1%
we have ]
_ : L
Je= KD 1o+ el
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and >

35
D2
!h » 4 3 m -5
Dy KDI5+
Fora given speed at the load,D , » 1=n,so that
0 1
1
Py o» gﬁg
_1+ K il
n025 2n

T herefore, the hydraulic natural frequency Increases as n is increased.

T he expression above can be further m anipulated to give,

n125 n05
1o » = = - = = :
.h _ - ]
n2+ o =2 nos + o t=2
Jn Jn o
or 1.,
|h 1+ J
- - %@ — JmJD A .
| b ’
(*n)o ne-+ ﬂLD_
whereJ,, Isthemotor inertia w ith direct drive. T hus, if
D
. ) Ly 05
JLA Jup = =n"”;
(*n)o
and if |
, - =h 025 .
Jué Jdno =) =N
(n o

6.7 Summary ofEHD Position Control Servo

(I

. Close loop w ith position feedback.

[Ne)

. Stability.

(a) Establish servo loop transfer function, A .
(b) Approxim ate A, in term s of low est resonance, ! .
(c) Establish approxim ate design criterion for loop stability, K < 2,1.

w

. System perform ance.

(@) Closed loop response, ﬁ— = acubic.
(b) Approxim ate cubic as lag at !, plus quadratic term .
(c) Determ ine bandw idth based on lowest corner frequency, !y.

4. Compensation, as shown in Figures 53 through 55.
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T here are som e general criteria applicable to the \good"” design ofany servo system .

1. Theremustalwayshearangeoffrequenciesw here the loop gain issubstantially greater
than unity. A Il the desirab le characteristics of feedback controlare based on thissim ple
fact. W hen the loop gain is less than unity, feedback is not e®ective and the loop is
essentially open. T he crossover frequency gives the borderline between open loop and
closed loop control.

2. Thereisalways an accuracy requirem ent and this necessitates som e loop gain greater
than unity.

3. A system should never be designed conditionally stable unless it cannot be avoided.

4. For satisfactory stability, the crossover frequency should occur on an asym ptotic j 1
slope and it must be \controlled”. T hat is, estab lishm ent of the crossover frequency
must be an explicit part of design, and ts value and variation m ust be com puted to
assure stability under all operating conditions.

5. Noise rejection and stability always lim it the system bandw idth. In fact it is desirable
to keep the bandw idth ata m inim um consistent w ith speci cations. A reduced bhand-
width usually sim pli es com pensation and,because peak poweroutputs are associated
with high frequencies, relaxes requirem ents on individual elem ents, thereby producing
savings in cost.

6. Accuracy requirem entsusually dictate the slope oftheB ode diagram at low frequencies,
that is, zero for type 0 system s, j 1 for type 1 system s, j 2 for type 2 system s, and so
on.

T hese constraints, or good design features, are represented in the Bode diagram of Figure
56.

7 SPECIAL TOPICS

7.1 Pressure Transientsin Fluid Power Control System s

Consider a sim ple m ass{spring system . T he governing equation is sim ply N ew ton"s law :

d2x _
m d?: |kX .
Integrating, we get
du du dx o
md—t—|kX)md—x¢ﬁ—|kX)mU,dU—|kXdX)
mu?  kx? .
T+ T: const.= (kinetic energy developed) + (energy stored) :
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Ifuy be the velocity at x = 0 and x, the position when u = 0, then

mu? kx?
— %4+ 0= 0+ 22 -
2 0=0 2

Now draw an analogy w ith the \trapped °uid spring” ofvolum e Vy, i.e.,

- 42
K - et p
h VO
W ehave,
1 1
M ov? = 2K ,x2

2 Po” 9 po -
Themaximum pressure in the trapped °uid spring will occur when the piston velocity is
zero. A force balance under this condition gives,

P2maxAp = K thO B

Elim inating x,,, we get

Vp
2

A

T his expression neglects the e@ects ofany dam ping present in the system .

Po,a = Kl ¢= vy,

2nd A pproxim ation
Consider the VCP with inertia load only,

v
4 e
PLA, = I X, :

Ifwe combine and elim inate x,, we get

where

M Ve

A sthecontrolvalve isclosed,w ith Q . held constant (constant piston speed),P; w illdecrease
and P, will increase until at the instant of valve closure, P; = P, = Pgs=2 and Q will
decrease in a step change from Q. = A,sx, to Q. = 0. Let this instant de ne t = 0,
Xp = Xpoys SXp = Vpg.

In the Laplace dom ain the step change in Q | is given by

ORNES T
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and the pressure response Is

47 s Apva —
P = Vi I S . 4 eVpo !h .
L~ 2 - 2 -

Inverting to the tim e dom ain,with P_(0)= 0,

4 vy, .
PL(t)= j %sm!ht:
PV

T his expression can only be valid untilt= t; when P, approaches zero. De ne Py as the
ratio of the approxim ate peak pressure to supply pressure,

S_

Voo N

P, = o ,
S I

and D_
PL(t): i 2P3PRSin!ht:

Assum ing that P, and P, continue a sym m etrical divergence untilP; ! 0,thetinet= t
can he found,
i PL(t)= Pa(ty)i Poi(ti)= Psj O

or b_

iPs =i 2P3PRSin!ht1;
or A |

t = ! sin i? pl—

' !h TPR
T he rate ofchange of the load pressure drop s,

p_
P o= 2V PsPgrcos!yt:

Att= t, we get
P_L = P—li P—2: iZP—Z;

and sym m etry is assum ed, see Figure 57. T hen

Pf ' A . 14
P_Q(tl): T!hPSPR CoS Sinil pT ,
R

or

1.p.d
P, () = *‘23

For tim es beyond t;, P, continues to increase in excess ofPs. Further analysis begins w ith
an initial condition of P,(t;) = Ps and P_(t;) given above.

P2 1

Thesupply cham ber isassum ed to rem ain atzerowhileP, > P and,during thisperiod,
dam ping due to leakages is taken into account. T hus,

Vo dP
Apvp= Quz 0=t Cigt Copt K o)Ps;
€
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and
Pohp= i M 8%, = i M sy, :
Elin inating v,:
! '

MV K ceM .. ..
- ;\ 052 4 2\62 s+ 1 P,(s)= ternsdue to initial conditions ;
et p p

where we have denoted

If s
! 1

1, = h_ = —
L) 9—2, 2 2¢

then i 1
32 1)
|—2+2|—S+1 PQ(S): | ;
L) L)
where  h ;
= 7 @tat s)P2(0) + P2(0)
2

The system is thus second order with \input" arising from the initial pressure and its
rate ofchange. T he solution in the tim e dom ain iIs

20s 1
PQ(t) eii2'2¢t H q ﬂ
b S 24@ PR2| =t +2A5|n 1, 1 i§¢t
§ Li %3
a H g 1.
+ 1j tfcos 1, 1j tie¢t ;
where
¢t=tj > 0:
The peak occurs at
tt = L ty;
where or = -3
2 2 .
1 Li ) Pyi g
'z¢tm—e|—tan'§ & é
1 + 1+ 4 PRi g
and is given by
M S

PZ 050t %1 1
—rax = ogiftatl By P2y 2y P2~ for < 1
P 2 R TR ?
Forsmallvaluesofthe dam ping ratio t, and large values of Py,

Y

¢t % tanit(l )= 7
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and b
2 i hity
= PpetTo
P ®

For smallvalue of peak pressure we want large +,, which m eans that we have to em ploy a
relief valve.

ReliefValves: The presence ofa reliefvalve in the system w ill lead to values oft, > 1. In
this case the m axim um pressure P, . isshown in Figure 58. T he response isnot oscillatory
and the maximum pressure is evaluated as¢ t! 1 . W hen this expression is evaluated for
+, A 1, the resultis

P2max1/41+ P_R.

P 2%,

Thevalue of £, is given by

Kr+Kc+Cip+Cep¢ eMt_

t, =
- 2A Vo

where K , is the coet cient of relief °ow ,
Qr=K(P2i Ps);

and the valve is set to open atPg. The coet cient K , is intentionally large relative to the

leakage coet cients, and s
) K el e
Themaximum relief°ow iswhen P, = P, .. ,S0 that
) _ _ K ePrPs
Qrvo = KeConi Ps)z =
Qrmax: AP = PRPS: APVPO:

Vo
This relationship isuseful in estim ating the necessary °ow capacity of relief valves.

For a rotary system , the equivalent expression is

Qrmax: Dm“-m ;

and S—
Pg = a0 eJt;

Ps Vo

where |, , IS the m otor speed at the \sudden stoppage design point."
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7.2 Hydraulic Power Transm ission

1. Introduction

T he connection between the power{generating, power{controlling, and pow er{utilization de-
vices requires the transm ission of ©ow s and pressures through the transm ission lines. Since
change in °uid power requires pressure changes, transm ission of pressure signals becom es an
in portant consideration in system design to assure dynam ic stability and speed of response.

2. Steady °ow

Hydraulic circuits are characterized by a num ber ofbends in tubing and various ttings.
The total pressure drop in a system is,

Xe Ly oyv2 o kLo pv2 XRe | hy2
1 1 |

¢P = fi—¢ + fi—¢ + fi—¢ ;
i= 1 IDi 2 i= 1 IDi 2 i= 1 IDi 2
where
Ng = numberoftubes
ng = numberof ttings
N,k = numberofbends

Le = equivalent length for each bend and tubing:

f is a friction factor given by,

for R e < 2000, and . q
p—f_: 2log,;Rec¢ f)j 08 ;

forRe> 4000.

Velocities in hydraulic circuits are norm ally lim ited due to practical considerations. E x-
ceeding the recom m ended valuesm eans larger pressure losses and tem perature rises. W eight
and cost penalties result from velocities that are too low . Typicalvalues are:

2 Suction lines: 20{75 in/sec.
2 D ischarge lines: 100{200 in/sec.

2 Flow in reliefvalves: 1000 in/sec.

3.Dynam ic response ofhydraulic transm ission lines

W ith unsteady °ow through the piping ofa hydraulic system , °uid m ass and com pressiil-
ity e@ects can introduce undesirable transients and deterioration of system response. The

73



natural frequencies ofa transm ission line of length L are given by the organ pipe frequencies
from classical physics and depending on the boundary conditions are:

2nCo _ nCyo ...
f= i o n=1;2;3;:::
or
£ - (Zn i 1)C0 .
4L ’
where the speed of wave propagation is
S___
_ e
Co= P,

and it generally lies between 35;000 and 50;000 in/sec.

W hen the line length issm all com pared to the wavelengths contained in the pressure and
°ow signals, a lum ped m odelcan sim p lify the analysis considerably. R eferring to Figure 58,
energy is accum ulated according to

dpP
Cd—- ¢Q ;
and 0
l—=¢P
dt ¢ 7
where
A2
C = T; for a spring{backed piston accum ulator
| = I/ZA—L; for inertial energy storage uniform velocity pro le :
For the three{lum p m odelofFigure 59,
dP 3
dta = (Qal Ql)c_;
dP 3
d_tl = Q1 Q2)C—;
dP 3
To ° Qi 00
d 3
% = (Pai Pl)l—;
dQ 2 3
_tc = P . P -
T Pii 2)| ;
dQ » 3
_vr = P . P -
T Pai b)l ;

which can be solved num erically with Q ,,P, as inputsand P,,Q, asoutputs. Such m odels
require enough lum ps for accurate representation of wave propagation efects. U sually, one
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mustuse about 10 lum ps per shortest signal wavelength, where the wavelength | is related
to the signal frequency f by
Co .
s f_ -

If uid properties are assum ed to uniform ly distributed, the continuity and m om entum
equations, assum ing negligib le friction and no nom inal °ow , give

v 1P
ATHREES T
L
B THRE T

T hese equations, when com bined, form a second{order wave equation. T he solution for the
overpressure (excess pressure over the static pressure) in the s{dom ain is

- i : S
Pr(xis)= PR(s)el™ 4 PIG(S)E ™ 0= o
0
where P represents a wave travelling in the forward direction whil P ¥ represents a pres-

sure wave travelling in the reverse direction. P* and P T are established by the boundary
conditions at the ends of the line.

The forward traveling wave is,
P(s;x)= P feisx=to;

which is the transform ofa pressure wave P * (t) delayed in tim e by the am ount x=C,. T hus,
the delay tim e for the wave to travel down the entire line of length L is T,

L
T= —:
Co
Depending on the di®erent ways in which a transm ission line can be connected to other
elem ents in a hydraulic system ,we have the follow ing four solutions of the equations:

p # 2Zocosh(Ts) iZo 3 #
a  _ A4 shh(Ts) sohds) 5 Qa .
Pb B Zo iZocosh(Ts) Qb ’
sinh (T s) sinh (T s)
# 2 Z o sinh (T s) 1 3 #
Pa - 4 cosh(Ts) cosh(Ts) § Q a .
Q b - 1 j sinh(Ts) P b ’
cosh (T s) Zocosh(Ts)
# 2 Gnas) 1 3 #
Q a - 4 Zocosh(Ts) cosh (T s) 5 P a .
Pb B 1 iZosinh(Ts) Qb ’
cosh(T s) cosh (T s)
# 2 cosh (T s) il 3 #
Qa - 4 Losinh(Ts) Zpsinh(Ts) 5§ Pa
Q b - 1 j cosh(Ts) P b

Zosinh(Ts) Zosinh(Ts)
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In deciding which case to use, it helps to view a valve w ith high °ow gain,ora pump,asa
°ow mputand an accum ulator or large trapped volum e ofoilasa pressure input. A blocked
end is a zero °ow input and an open end is a zero pressure input. For exam ple, for the
transm ission line of the lum ped m odel of Figure 59, the second case of the above equations
app lies:

LosI{TS)) () s — 2P y(s) ;

Pals) cosh (T s) cosh (T s)
_ 1 - sinh(Ts) ]
Qo(s) = m(} a(8) i mpb(s) ;
where c
Lg= A—O

Is the characteristic wave im pedance.

Frequency response com putationsare easier w ith distributed m odels because ofthe equa-
tions,

cosh(j!t)

sinh(j!t)

cos(! t) ;
jsin(!t) :

Transient response com putations are easier w ith d®erential equations. 0 ne way ofreducing
transfer functions to polynom ials is to em ploy nite products,

H#

Y Hg T @2n + 1)
h(Ts) = 1+ = 5 1= =

cosh(T s) . P N 7T

and

. ¥ SN m Y%
sinh(Ts)= (Ts) 1+ — ;o= —

—_— LI T

4. Friction e@ects

Fluid friction acts to dam p out transm ission line transients. There are two m ain friction
models in use; the constant friction m odelw hich is sim p ler to use but it generally underesti-
m atesdam ping, and a frequency dependentm odelw here the various dam ping ratios depend
on the corresponding frequency.

7.3 Describing Function A nalysis

1. Introduction

Fornonlinear system s the principle of superposition of solutions doesnot hold. In general,
the response of nonlinear system s w ill depend on both m agnitude and type of input and it
may be com pletely di@erent for step inputs of di@erent m agnitude or sinusoidal inputs of
di®erent frequencies. The response m ay also depend drastically on the initial conditions.
Som e of the relevant phenom ena are:
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1. Frequency{am plitude dependence: Consider D ut ng"s equation, spring{m ass{dam per
w ith a nonlinear spring,

mA+ bx+ kx+ k%*=0:

Typical force{displacem ent curves are shown in Figure 61. W e refer to k°> 0 as a
hardening spring, kO< 0 as softening spring, while k©= 0 isnaturally a Iir&ar spring.
Thenaturalm otion (frequency of free oscillations) for the linear spring is  k=m , and
this is constant;ie.,itdoesnotdepend on the am plitude ofm otion, see Figure 61. T he
equivalent spring constant (the slope of the spring force vs. displacen ent curve) for
the nonlinear system is k + 3k%?2, and we can see,as Figure 61 dem onstrates, that in
this case the natural frequency will depend on the am plitude of m otion. A hardening
spring w ill oscillate at higher frequencies at high am plitudes whereas the opposite is
true for a softening spring.

2..Jum p phenom ena: Consider again D ut ng"sequation, this tim e adding sinusoidal forc-

ing,
mA+ bx+ kx+ k%*= P cos!t:

The frequency response curve for k= 0 has the fam iliar form shown in Figure 62.
AsFigure 61 suggests we can visualize the frequency response curves for k©> 0 and
kO< 0 by bending the linear frequency response curve in the appropriate direction,
so that it w raps around the naturalm otion curve, see Figure 62. W e can see that as
the excitation frequency is increasing or decreasing, the system m ay exhibit unstable
oscillations or m uktip le{valued oscillations w here the am plitude ofm otion w ill depend
on the initial conditions.

3. Subharm onic oscillations: For excitation frequency !, a nonlinear system m ay experi-
ence responses, hesides ! , at frequencies !'=n where n is an integer. T hese are called
subharm onics. Superharm inic oscillations, at frequenciesn! ,are also possible although
not as severe as subharm onics. G eneration of these oscillations depends upon initial
conditions, aswellas am plitude and frequency of excitation.

4. Lim itcycles: Lim it cycles are isolated, self{excited oscillations (ie., in the absence
of periodic forcing) typical of nonlinear systems. Consider the follow ing system of
nonlinear equations:

Xo+ Ox:(C %0 xii x2);
i X1+ 0x(C 2 x3i x3):

1< <
N —
1 1

Introduce polar coordinates in the form

q2 2

r = X+ X3,
HXQﬂ
A = tani! =
X1

Then, the system is w ritten as



W e can see that the system adm its the steady state solution,

r= "2 or xi+ xi-=

-2 .

This represents a periodic solution which | unlike the simple harm onic oscillator
case where there is a continuous fam ily of periodic solutions depending on the initial
conditions | isisolated. Such a periodic solution is called a lim it cycle.

A sanotherexam pleofa lim it cycle, consider the so{called Van derPolequation,w hich
modelsa spring{m ass{dam per system w ith nonlinear dam ping,

mAj b(lj x?)x+ kx=0:
Forsmallx it becom es linear,
mAj bx+ kx=0:

The equilibrium pointis x = 0, which is clearly unstable due to negative dam ping.
Therefore, solutions w hich start in the neighborhood of x = 0 mustm ove away from

it. 0 n the other hand, for large values of x the dam ping becom es positive. T herefore,
solutions that start far away from x = 0 mustm ove towards the origin. Since solution
curves cannot cross each other (such crossiong would violate uniqueness of solutions of
ordinary di®erentialequations), therem ustbe a lim it cycle in between which both sets
of solution curves approach asym ptotically. MATLAB has a nice di®erential equations
demo which illustrates the Van der Pol lim it cycle.

. Typesofbehavior: Thevarioustypesofpossible behavior in nonlinear system sdepend
heavily on system dim ensionality. T hus:

2 First{order system sm ay exhibit only equilibrium points.
2 Second{order system sm ay exhibit either equilibrium pointsor lim it cycles.

2 Higher{order system sm ay exhibitequilibrium points, Iim it cycles,and a plethora
ofothermore com plex response patterns.

Forced and/or discrete system s can he considerably m ore com plicated.

. Frequency entrainm ent: Ifa periodic force offrequency ! isapp lied to a system capable
ofexhibiting a lim it cycle of frequency !, we have the phenom enon ofbeats. A s the
di®erence between the two decreases, the beat frequency also decreasesand, for a linear
system itiszeroonly if! = 1,. In a self{excited nonlinear system ,however, it is found
that the frequency !, of the lim it cycle falls in synchronization w ith, or is entrained
by, the forcing frequency ! within a certain band of frequencies.

. Typesofnonlinearities: Som e inherent nonlinearities of particular signi cance to hy-
draulic system s are shown in Figure 63. Such nonlinearities can be either part of
the physical structure of the system or can be ad{hoc introduced through software
comm ands.
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2.Describing Functions

There are a few tools that can be used to predict the existence,m agnitude, and stability of
lin it cycles, nam ely,

2 num erical integrations,

2 contihuation m ethods,

N

perturbation m ethods,

N

describing function analysis.

Num erical integrations are easy to apply but the can only be used to con rm rather than
predict possible behavior, especially when a large num ber ofvariables and initial conditions
are present. Continuation m ethods require som e initial approxim ation of the lim it cycle
for a given set of param eters, while perturbation m ethods are best applied to system w ith
sm ooth nonlinearities, unlike the ones depicted in Figure 63. D escribing function analysis
Isan approxim ate m ethod that is best suited to the discontinuous nonlinearities com m on in
°uid power system s.

Suppose that the input to a nonlinear elem ent is sinusoidal. The outputw illbe periodic
and suppose thatonly the com ponentw ith the sam e frequency asthe input (the fundam ental
harm onic com ponent) is signi cant. T he com plex quantity

Cr ., .
6g= M—lhAll;
where
M = amplitude of input sinusoid
Cy = amplitude of fundam ental harm onic com ponentofoutput
Ay = phase shift of fundam ental harm onic com ponent ofoutput

Is called the describing function G 4.

3. Computation ofD escribing Functions

For a sinusoidal input
m@=M sin!t

to the nonlinear elem ent, the output c(t) m ay be expressed in Fourier series as follow s:

g
Aoyt (A cosnlt+ B,sinn!t)

c(t)

(Cosin(n!t+ Ay);

1
b=
o
+
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where

1 £
A, = T c(t)ycos(nlt)d(! t) ;
4
122% ]
B, = g c()ysin(ntt)d(! t) ;
0
Ch = A2+ B2;
, Hp T
A, = tanit L
By

Ifthe nonlinearity is sym m etric, then Ay = 0. The fundam entalharm onic com ponent of the
output is

Ajcos!tt+ Bysin!t
Cosin(Pt+ Ay):

Q)

The describing function is then given by,
qa— | A

A%‘}‘ch .1HA11TA
tant- — :

M B4

A'san exam ple, consider the saturation nonlinearity of Figure 64. A Fourier calculation of
the output waveforn for a sinusoidal input gives the follow ing describing function

2 3
2 ug 11 STEg T
6,z Z4sinit X+ 2 1; 2 5,
7 T T T

For a stauration function ofslope k the term 2=% in front of the above expression becon es
2k=%. A Iso, this expression is true forS < M .ForS > M ,the inputsignaldoesnot feel the
e@cts of the saturation and it behaves just like a linear unity gain; ie.,6 4= 1 forS > W .
A plotofthe saturation describing function G 4 versus the dim ension less ratio S=M is shown
in Figure 65. A very usefulgeneral property for calculating describing functions is:

The describing function of the sum of two elem ents is the sum of the individual
describing functions.

4.Describing Function A nalysis

Consider the closed{loop feedback system of Figure 66 containing a linear elem ent w ith
transfer function G and a nonlinear elem ent w ith describing function G 4. If the higher
harm onicsare sut ciently attenuated, the describing function G 4 can be treated asa com plex
gain. Then, the closed loop frequency response is

CGl) . G646 () |
RGY) ™ 1+ 646(!)°

T he characteristic equation is
1+ 646(G!)=10;
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or
1

6 ()= iGd(M ):

If this equation is satis ed, then the system will exhibit a lim it cycle w ith frequency ! and
am plitude M found from the intersection ofG (j!) and j 1=6 4(M ) graphs.

5. Stability of Lim it C ycles

To assess the stability of these lim it cycles, we have to recognize the sim ilarity between the
above and the N yquist criterion for linear system s. For exam ple, consider the case shown in
Figure 67. W e see thatwe have two lim it cycles w ith characteristics (M 4 ;',)and (M 5 ;15)
with M, < M 5. Consider the intersection A ofthe G (j!) and j 1=6 4(M ) lociand assum e
asnalldecrease in am plitude M , . The representative pointon the j 1=6 4 locusw illm ove to
anew point,D . Thispointisnotencircled by theG (j!) locus, the system w illm ove further
and further away from the intersection and the oscillations w ill eventually stop. T herefore,
point A possesses divergent characteristics and it corresponds to an unstable lin it cycle.
By a similar argum ent we can see that point B possesses convergent characteristics and it
corresponds to a stable lim it cycle. Indeed, if the am plitude of the Iim it cycle is decreased
so that the system m oves to pointF we can see that the new pointisencircled by theG (j!)
locus, the oscillations w ill grow , the system w ill tend to return to the original intersection
B and the oscillations are stable. Asa sum m ary,we can conclude that in general: T he lin it
cycle is predicted to be stable or unstable according as the locus of j 1=6 4 crosses the locus
of G (the Nyquist plot) from right to left or from left to right, respectively,as M increases,
viewed along the direction of increasing !. This criterion is illustrated by the sketch of
Figure 68.

6. Exam ple: Saturation

Consider a linear system w ith the saturation nonlinearity shown in Figure 64. Suppose that
the N yquist diagram for the linear elem ent encloses the j 1 point, so that the linear systen
Is unstable. If there were no saturation, this m eans that oscillations w ith ever{increasing
am plitude would develop. To analyze the e@ect of saturation let us superim pose the graph
ofthe describing function ofthe saturation nonlinearity onto the N yquist diagram , as shown
in Figure 69. W e can see that the e@ect of the saturation (i.e., lim it on actuator stroke) is
to generate a stable lim it cycle at the intersection point and thus prevent the m otions from
becom ing arbitrarily large. If the gain of the transfer function is decreased so that the locus
of j 1=6 4 doesnot intersect that of G , the system becom es stable and any oscillations that
may develop will eventually die out. No Iim it cycle (self sustained oscillation) w ill exist at
steady state.

A's another exam ple consider the e@ects of saturation on a conditionally stable system
asshown in Figure 70. T he linear system is here stable since the polar plot avoids the j 1
point. In this case we can see thattwo lim it cycles are created one atP, and another one at
P,.ThelimitcycleatP, isunstable,whereas the lim itcycle atP, isstable. T herefore, if the
system am plitude exceeds this value, for exam ple during transient response, self{sustained
oscillations w ith am plitude corresponding to P, will develop. In this case even though the
origin is stable, the e®ect of the saturation is to lin it the origin’s dom ain of attraction.
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System response w ill converge to zero as long as the initial transient does not exceed P ;.

7.Example: Deadband

A deadband nonlinearity (Figure 71) can result from Coulom b friction and from overlap of
valve ports in hydraulic system s. T he linear gain of the deadband isnorm alized to one and
any gain presentwould be considered as part of the linear portion of the loop. Analysis of
the output waveform gives the follow ing describing function

2 (S 3

2 % Moy Hp T
6g= —4-jsihit — j — 1j — S5;

o2 T T T

which isplotted in Figure 72.

W e note that j 1=6 4 is a large negative real num ber for sm all inputs to the deadband
elem ent and approaches j 1 for large inputs. Suppose the polar plot is as shown in Figure
73. The linear system with this Nyquist plot would be unstable. The Im it cycle at the
intersection point is also unstable. This m eans that the system will actually be stable for
small inputs to the deadband (i.e., as long as the intersection point is not crossed over). If
it seem s peculiar that an unstable linear system m ay becom e stable with the addition ofa
nonlinear elem ent, thisisdue to the fact that the actual system including the deadband has
very sm all gain at the origin. In this case, since the deadband generates an unstable lin it
cycle, unbounded oscillations will occur if the input to the deadband is large enough. This
Iswhy deadbands are quite undesireble from the stability point of view . In any practical
system ,however, the deadband w ill saturate and the oscillations w illbecom e bounded. This
case is treated next.

8. Exam ple: Nonlinear G ain C haracteristics

The describing function of the generalnonlinear gain characteristic in Figure 74 is,

2 3
2 44 Mo T ) ST "
64 = kst —(kyj k init — + — 17 —
d 3 %(u 2) 9si T " i
2 3
2 Mg TTTHgT
+ l/_(k2 i k3)4S|n il M_ + M_ 1 i M_ 5 B
|

The describing functions for saturation and deadband can he obtained from this expression
by letting appropriate quantities be zero. W 1th so m any param eters involved, It is better to
look at a particular case. 0 finterest is a com bination of saturation and deadband (Figure
75). In this case k; = ky = 0 and k, = 1 and the describing function is plotted in Figure 76.
Note that the \gain" is sm all for sm all inputs, increases to a m axim um , then decreases as
the inputam plitude M increases. T hus, the quantity j 1=6 4 startsat j 1 forsmallinputs,
decreases to a m inim um , then again approaches j 1 as the input becom esvery large. T he
i 1=64 locusand a polarplotofa linearly unstable system are shown in Figure 77. For the
intersections shown, point P, isan unstable lin it cycle and P, is a stable lim it cycle. N ote
that this system 1is stable for sm all inputs not exceeding P,, but once the input am plitude
becom esgreater than atpointP,,oscillationsw illbuild up to a lim it cycle atP,. The j 1=6 4
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locus hasa minimum which approaches but never exceeds the j 1 point. Thus, a systen
having this characteristic and designed so that the polar plot doesnotencircle the j 1 point
would be stable. However, it is possible for the system to be stable even if the j 1 point is
encircled because of them inimum ofthe j 1=6 4 locus.

9. Backlash and H ysteresis

B acklash and hysteresis nonlinearities are m ultivalued. W ith backlash, the mput must be
m oved by a certain am ount before any m otion of the outputoccurs. Sim ilarly upon reversal.
G enerally speaking, backlash can pose a serious threat to the stability ofa loop. D itheris a
widely used method of rem oving backlash. Its is very e®ective w here the backlash is caused
by friction. D ither is a high frequency signal of constant am plitude and frequency which is
added to the control signalatthe input to the nonlinearity and has the e@ect ofm aking the
elem entappear linear. H owever,dither cannotbe used in certain cases such as gear backlash
because it is dit cult to inject, causes wear,and shows in the output.

H ysteresis nonlinearities constitute a nuisance but not a serious threat to stability. T he
m ost noticeable attribute ofelem ents w ith hysteresis nonlinearity is an am ount ofphase lag
at low frequencies.

10. Com m ents

Thedescribing function analysis is an extension of linear technigues to the study ofnonlinear
system s. Typical applications are to system s w ith few nonlinearities. T he analysis is only
approxim ate: thereare instancesw here the describing function analysispredicts the existence
of lim it cycles but the actual system exhibits none, and other instances w here the situation
IS reversed.

It ismoreaccurate to state that the describing function analysis predicts the likelihood
of lim it cycles. The system may exhibit a periodic solution with am plitude and frequency
close to the predicted ones. Final response has to be veri ed by num erical integrations.

11. A Counter{exam ple: Van der Pol'sEquation

Oncemore,consider Van der Pol's equation
f+ 2@y% i Lyt y=0:

In order to represent this in a \block diagram " form including an appropriate nonlinear
elem ent, we write it as,

Wi 2+ y= 3%y or

) d

N - 2 y3
Wi Ary =iy oor
(s*i 2+ L)y = 2s(iy’) or
2s

TERRYIE TR
T herefore, in feedback form ,

2g
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with the nonlinearity f(u) = u?®, and zero reference input, so thatu = jy, see Figure 78.
For the cubic nonlinearity,

3n 2
Gd: 1 B
In order to predict the lim it cycle we have to solve
1
i1z ; -
¢ ah) Y0
o 514
i1z 20+ 1 anze
or

4075 D+ @i 3 H2 =0
T herefore, the frequency of the lim it cycle is predicted at

I =1 (period 2%);

and its am plitude at

The graphical construction easily show s that this Iim it cycle is stable.

Now although Van der Pol's equation cannot be solved analytically, it is possible to ob-
tain asym ptotically exact expressions for the lim it cycle param eters as 2 approaches zero or
in"nity. In the small param eter lin it (3! 0), the equation becom es that ofa sin ple har-
monic oscillator w ith unit angular frequency, coinciding w ith the prediction ofthe describing
function m ethod. In the large param eter lin it (3! 1 ), a perturbation analysis predicts
period 1:6142, instead of xed 2%. In order to understand why the m ethod fails in this case,
take a closer look at the frequency response of the linear com ponent:

- - M M.t

1y - J 1L
Cat)= il+ 3 1 T
It is clear that, as 2 increases, so does the range of ! overwhich G (j!) % j 1. Thismeans
that in the lim it ofin nite 2we obtain an \allpass" Iter,and hence the harm onic content
ofthe lim it cycle becom essuch thatthe predom inantresponse isno longer sim ply sinusoidal,
and the describing function approxim ation cannot be expected to be valid any m ore.
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These notes utilize material mainly from the following two sources:

1. Healey,A .J.,Hydraulic C om ponents.

2. W errit,H .E.,Hydraulic Control System s.
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